Bruce is a large protein (530 kDa) that contains an N-terminal baculovirus IAP repeat (BIR) and a C-terminal ubiquitin conjugation domain (E2). BRUCE upregulation occurs in some cancers and contributes to the resistance of these cells to DNA-damaging chemotherapeutic drugs. However, it is still unknown whether Bruce inhibits apoptosis directly or instead plays some other more indirect role in mediating chemoresistance, perhaps by promoting drug export, decreasing the efficacy of DNA damage-dependent cell death signaling, or by promoting DNA repair. Here, we demonstrate, using gain-of-function and deletion alleles, that Drosophila Bruce (dBruce) can potently inhibit cell death induced by the essential Drosophila cell death activators Reaper (Rpr) and Grim but not Head involution defective (Hid). The dBruce BIR domain is not sufficient for this activity, and the E2 domain is likely required. dBruce does not promote Rpr or Grim degradation directly, but its antiapoptotic actions do require that their N termini, required for interaction with DIAP1 BIR2, be intact. dBruce does not block the activity of the apical cell death caspase Dronc or the proapoptotic Bcl-2 family member Debcl/Drob-1/dBorg-1/Dbok. Together, these results argue that dBruce can regulate cell death at a novel point.
Embryogenesis is the coordinated assembly of tissues during morphogenesis through changes in individual cell behaviors and collective cell movements. Dynamic imaging, combined with quantitative analysis, is ideal for investigating fundamental questions in developmental biology involving cellular differentiation, growth control and morphogenesis. However, a reliable amniote model system that is amenable to the rigors of extended, high-resolution imaging and cell tracking has been lacking. To address this shortcoming, we produced a novel transgenic quail that ubiquitously expresses nuclear localized monomer cherry fluorescent protein (chFP). We characterize the expression pattern of chFP and provide concrete examples of how Tg(PGK1:H2B-chFP) quail can be used to dynamically image and analyze key morphogenetic events during embryonic stages X to 11.
It has been suggested that damage to anterior regions of the left hemisphere results in a dissociation in the perception and lexical activation of past-tense forms. Specifically, in a lexicaldecision task in which past-tense primes immediately precede present-tense targets, such patients demonstrate significant priming for irregular verbs (spoke-speak), but, unlike control participants, fail to do so for regular verbs (looked-look). Here, this behavioral dissociation was first confirmed in a group of eleven patients with damage to the pars opercularis (BA 44) and pars triangularis (BA 45) of the left inferior frontal gyrus (i.e., Broca's area). Two conditions containing wordonset orthographic-phonological overlap (bead-bee, barge-bar) demonstrated that the disrupted regular-verb priming was accompanied by, and covaried with, disrupted ortho-phonological priming, regardless of whether prime stimuli contained the regular inflectional rhyme pattern. Further, the dissociation between impaired regular-verb and preserved irregular-verb priming was shown to be continuous rather than categorical; priming for weak-irregular verbs (spent-spend) was intermediate in size between that of regular verbs and strong verbs. Such continuous dissociations grounded in ortho-phonological relationships between present-and past-tense forms are predicted by single-system, connectionist approaches to inflectional morphology and not predicted by current dual-system, rule-based models. Event-related potential data demonstrated that N400 priming effects were intact for both regular and irregular verbs, suggesting that the absence of significant regular-verb priming in the response time data did not result from a disruption of lexical access, and may have stemmed instead from post-lexical events such as covert articulation, segmentation strategies, and/or cognitive control. Keywords aphasia; Broca's area; left inferior frontal gyrus (LIFG); event-related potentials (ERP); inflectional morphology; regular and irregular past tense
Background: Extended T-cell culture periods in vitro deplete the CAR-T final product of naive and stem cell memory T-cell (T scm) subpopulations that are associated with improved antitumor efficacy. YTB323 is an autologous CD19-directed CAR-T cell therapy with dramatically simplified manufacturing, which eliminates complexities such as long culture periods. This improved T-Charge™ process preserves T-cell stemness, an important characteristic closely tied to therapeutic potential, which leads to enhanced expansion ability and greater antitumor activity of CAR-T cells. Methods: The new T-Charge TM manufacturing platform, which reduces ex vivo culture time to about 24 hours and takes <2 days to manufacture the final product, was evaluated in a preclinical setting. T cells were enriched from healthy donor leukapheresis, followed by activation and transduction with a lentiviral vector encoding for the same CAR used for tisagenlecleucel. After ≈24 hours of culture, cells were harvested, washed, and formulated (YTB323). In parallel, CAR-T cells (CTL*019) were generated using a traditional ex vivo expansion CAR-T manufacturing protocol (TM process) from the same healthy donor T cells and identical lentiviral vector. Post manufacturing, CAR-T products were assessed in T-cell functional assays in vitro and in vivo, in immunodeficient NSG mice (NOD-scid IL2Rg-null) inoculated with a pre-B-ALL cell line (NALM6) or a DLBCL cell line (TMD-8) to evaluate antitumor activity and CAR-T expansion. Initial data from the dose escalation portion of the Phase 1 study will be reported separately. Results: YTB323 CAR-T products, generated via this novel expansionless manufacturing process, retained the immunophenotype of the input leukapheresis; specifically, naive/T scm cells (CD45RO -/CCR7 +) were retained as shown by flow cytometry. In contrast, the TM process with ex vivo expansion generated a final product consisting mainly of central memory T cells (T cm) (CD45RO +/CCR7 +) (Fig A). Further evidence to support the preservation of the initial phenotype is illustrated by bulk and single-cell RNA sequencing experiments, comparing leukapheresis and final products from CAR-Ts generated using the T-Charge™ and TM protocols. YTB323 CAR-T cell potency was assessed in vitro using a cytokine secretion assay and a tumor repeat stimulation assay, designed to test the persistence and exhaustion of the cell product. YTB323 T cells exhibited 10- to 17-fold higher levels of IL-2 and IFN-γ secretion upon CD19-specific activation compared with CTL*019. Moreover, YTB323 cells were able to control the tumor at a 30-fold lower Effector:Tumor cell ratio and for a minimum of 7 more stimulations in the repeat stimulation assay. Both assays clearly demonstrated enhanced potency of the YTB323 CAR-T cells in vitro. The ultimate preclinical assessment of the YTB323 cell potency was through comparison with CTL*019 regarding in vivo expansion and antitumor efficacy against B-cell tumors in immunodeficient NSG mouse models at multiple doses. Expansion of CD3+/CAR+ T-cells in blood was analyzed weekly by flow cytometry for up to 4 weeks postinfusion. Dose-dependent expansion (C max and AUC 0-21d) was observed for both YTB323 and CTL*019. C max was ≈40-times higher and AUC 0-21d was ≈33-times higher for YTB323 compared with CTL*019 across multiple doses. Delayed peak expansion (T max) of YTB323 by at least 1 week compared with CTL*019 was observed, supporting that increased expansion was driven by the less differentiated T-cell phenotype of YTB323. YTB323 controlled NALM6 B-ALL tumor growth at a lower dose of 0.1×10 6 CAR+ cells compared to 0.5×10 6 CAR+ cells required for CTL*019 (Fig B). In the DLBCL model TMD-8, only YTB323 was able to control the tumors while CTL*019 led to tumor progression at the respective dose groups. This ability of YTB323 cells to control the tumor at lower doses confirms their robustness and potency. Conclusions: The novel manufacturing platform T-Charge™ used for YTB323 is simplified, shortened, and expansionless. It thereby preserves T-cell stemness, associated with improved in vivo CAR-T expansion and antitumor efficacy. Compared to approved CAR-T therapies, YTB323 has the potential to achieve higher clinical efficacy at its respective lower doses. T-Charge™ is aiming to substantially revolutionize CAR-T manufacturing, with concomitant higher likelihood of long-term deep responses. Figure 1 Figure 1. Disclosures Engels: Novartis: Current Employment, Current equity holder in publicly-traded company. Zhu: Novartis: Current Employment, Current equity holder in publicly-traded company. Yang: Novartis: Current Employment, Patents & Royalties. Price: Novartis: Current Employment. Sohoni: Novartis: Current Employment. Stein: Novartis: Current Employment. Parent: Novartis: Ended employment in the past 24 months; iVexSol, Inc: Current Employment. Greene: iVexSol, Inc: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Niederst: Novartis: Current Employment, Current equity holder in publicly-traded company. Whalen: Novartis: Current Employment. Orlando: Novartis: Current Employment. Treanor: Novartis: Current Employment, Current holder of individual stocks in a privately-held company, Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties: no royalties as company-held patents. Brogdon: Novartis Institutes for Biomedical Research: Current Employment.
a b s t r a c tThe current work investigated whether differences in phonological overlap between the past-and present-tense forms of regular and irregular verbs can account for the graded neurophysiological effects of verb regularity observed in past-tense priming designs. Eventrelated potentials were recorded from 16 healthy participants who performed a lexical-decision task in which past-tense primes immediately preceded present-tense targets. To minimize intra-modal phonological priming effects, cross-modal presentation between auditory primes and visual targets was employed, and results were compared to a companion intra-modal auditory study (Justus, T., Larsen, J., de Mornay Davies, P., Swick, D. (2008). Interpreting dissociations between regular and irregular past-tense morphology: evidence from event-related potentials. Cognitive, Affective, Behavioral Neuroscience, 8,[178][179][180][181][182][183][184][185][186][187][188][189][190][191][192][193][194]. For both regular and irregular verbs, faster response times and reduced N400 components were observed for present-tense forms when primed by the corresponding past-tense forms. Although behavioral facilitation was observed with a pseudopast phonological control condition, neither this condition nor an orthographic-phonological control produced significant N400 priming effects. Instead, these two types of priming were associated with a post-lexical anterior negativity (PLAN). Results are discussed with regard to dual-and single-system theories of inflectional morphology, as well as intra-and cross-modal prelexical priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.