Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.
Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated.
The objective of this work was the application of peptidomics technologies for the detection and identification of reliable and robust biomarkers for Alzheimer's disease (AD) contributing to facilitate and further improve the diagnosis of AD. Using a new method for the comprehensive and comparative profiling of peptides, the differential peptide display (DPD), 312 cerebrospinal fluid (CSF) samples from AD patients, cognitively unimpaired subjects and from patients suffering from other primary dementia disorders were analysed as four independent analytical sets. By combination with a cross validation procedure, candidates were selected from a total of more than 6,000 different peptide signals based on their discriminating power. Twelve candidates were identified using mass-spectrometric techniques as fragments of the possibly neuroprotective neuroendocrine protein VGF and another one as the complement factor C3 descendent C3f. The combination of peptide profiling and cross validation resulted in the detection of novel potential biomarkers with remarkable robustness and a close relation to AD pathophysiology.
Profiling of peptides and small proteins from either human body fluids or tissues by chromatography and subsequent mass spectrometry reveals several thousand individual peptide signals per sample. Any peptide is an intermediate in the course of biosynthesis, post-translational modification (PTM), proteolytic processing and degradation. Changes in the concentration of one peptide often affects the concentration of the other, hence a challenge consists in the development of suitable tools to turn this large amount of data into biologically relevant information. Comprehensive statistical analysis of the peptide profiling data allows associating peptides, which are closely related in terms of peptide biochemistry. Here, the bioinformatic concept of peptide networks, correlation-associated peptide networks (CANs), is introduced. Peptides with statistical similarity of their concentrations are grouped in form of networks, and these networks are interpreted in terms of peptide biochemistry. The spectrum of functional relationships found in cerebrospinal fluid CAN covers PTM and proteolytic degradation of peptides, clearance processing in the complement cascade, common secretion of peptides by neuroendocrine cells as well as ubiquitin-mediated degradation. Our results indicate that CAN is a powerful bioinformatic tool for the systematic analysis and interpretation of large peptidomics and proteomics data and helps to discover novel bioactive and diagnostic peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.