Focused ion beams are an essential tool for cross-sectional material analysis at the microscale, preparing TEM samples, and much more. New plasma ion sources allow for higher beam currents and options to use unconventional ion species, resulting in increased versatility over a broader range of substrate materials. In this paper, we present the results of a four-material study from five different ion species at varying beam energies. This, of course, is a small sampling of the enormous variety of potential specimen and ion species combinations. We show that milling rates and texturing artifacts are quite varied. Therefore, there is a need for a systematic exploration of how different ion species mill different materials. There is so much to be done that it should be a community effort. Here, we present a publicly available automation script used to both measure sputter rates and characterize texturing artifacts as well as a collaborative database to which anyone may contribute. We also put forth some ideas for new applications of focused ion beams with novel ion species.
We study the coupled effects of ion beam chemistry and morphology on the assembly of templated epitaxial nanostructures. Using a focused ion beam (FIB) system equipped with a mass-selecting filter, we pattern Si substrates with local ion doses of Si, Ge and Ga to control subsequent Ge(x)Si(1 - x) epitaxial nanostructure assembly. This capability to employ different templating species allows us to study how different incorporated ion species in the near surface region affect the ability to localize nucleation during subsequent epitaxial growth. Our results indicate that FIB-directed self-assembly is a complex process, dependent on dose-induced morphology in addition to ion-specific chemical effects.
We demonstrate arrays of cantilevers with different lengths, fabricated by focused ion beam
milling. The arrays of oscillators generate a spectrum of different resonant frequencies, where
each frequency correlates to the corresponding individual cantilever. The frequency response
from all the cantilevers is collected from a single measurement under the same environment
and conditions for the entire array. The mass response of the system generated the same
Δf/f0
for the cantilevers, within 0.1% accuracy. We denote the method MFSAC: multi-frequency
signal analysis from an array of cantilevers. The simultaneous detection of several
frequencies in one spectrum has great benefits in mass sensor applications, offering the
possibility for true label-free detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.