BackgroundContinuous time movement models resolve many of the problems with scaling, sampling, and interpretation that affect discrete movement models. They can, however, be challenging to estimate, have been presented in inconsistent ways, and are not widely used.MethodsWe review the literature on integrated Ornstein-Uhlenbeck velocity models and propose four fundamental correlated velocity movement models (CVM’s): random, advective, rotational, and rotational-advective. The models are defined in terms of biologically meaningful speeds and time scales of autocorrelation. We summarize several approaches to estimating the models, and apply these tools for the higher order task of behavioral partitioning via change point analysis.ResultsAn array of simulation illustrate the precision and accuracy of the estimation tools. An analysis of a swimming track of a bowhead whale (Balaena mysticetus) illustrates their robustness to irregular and sparse sampling and identifies switches between slower and faster, and directed vs. random movements. An analysis of a short flight of a lesser kestrel (Falco naumanni) identifies exact moments when switches occur between loopy, thermal soaring and directed flapping or gliding flights.ConclusionsWe provide tools to estimate parameters and perform change point analyses in continuous time movement models as an R package (smoove). These resources, together with the synthesis, should facilitate the wider application and development of correlated velocity models among movement ecologists.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-017-0103-3) contains supplementary material, which is available to authorized users.
Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies.
Tri-axial accelerometry has proved to be a useful technique to study animal behavior with little direct observation, and also an effective way to measure energy expenditure, allowing a refreshing revisit to optimal foraging theory. This theory predicts that individuals should gain the most energy for the lowest cost in terms of time and energy when foraging, in order to maximize their fitness. However, during a foraging trip, central-place foragers could face different trade-offs during the commuting and searching parts of the trip, influencing behavioral decisions. Using the lesser kestrel (Falco naumanni) as an example we study the time and energy costs of different behaviors during the commuting and searching parts of a foraging trip. Lesser kestrels are small insectivorous falcons that behave as central-place foragers during the breeding season. They can commute by adopting either time-saving flapping flights or energy-saving soaring-gliding flights, and capture prey by using either time-saving active hovering flights or energy-saving perch-hunting. We tracked 6 lesser kestrels using GPS and tri-axial accelerometers during the breeding season. Our results indicate that males devoted more time and energy to flight behaviors than females in agreement with being the sex responsible for food provisioning to the nest. During the commuting flights, kestrels replaced flapping with soaring-gliding flights as solar radiation increased and thermal updrafts got stronger. In the searching part, they replaced perch-hunting with hovering as wind speed increased and they experienced a stronger lift. But also, they increased the use of hovering as air temperature increased, which has a positive influence on the activity level of the preferred prey (large grasshoppers). Kestrels maintained a constant energy expenditure per foraging trip, although flight and hunting strategies changed dramatically with weather conditions, suggesting a fixed energy budget per trip to which they adjusted their commuting and searching strategies in response to weather conditions.
Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season.
Lesser kestrels Falco naumanni are migratory central-place foragers that breed in dynamic arable landscapes. After arriving from migration, kestrels have no knowledge of the distribution of crops, and consequently prey, around their colony. The energy demand of pairs increases as breeding season progresses, but at the same time prey abundance, and their knowledge on prey distribution, also increases. Wind can have a strong influence on flight cost and kestrels should try to reduce energy expenditure when possible. When prey abundance is low, kestrels have little knowledge of prey distribution, and pairs have no chicks, they could reduce foraging flight cost by leaving the colony with tailwinds. When prey is abundant, knowledge on prey distribution has increased, and chick demand is high, kestrels should fly to the most favorable foraging patches. We analyzed foraging trips directions in a lesser kestrel colony along the breeding season and in relation to wind speed and direction. We recorded 664 foraging trips from 19 individuals using GPS-dataloggers. We found that outward flights direction changed from uniform to a concentrated distribution along the season, as prey abundance and individual experience increased. We also found a temporal trend in the angular difference between outward flights and wind directions, with low values early in the season and then increasing as expected, but again low values at the end, contrary to expectation. Results suggest changes in kestrels foraging strategy along the season in relation to wind. Kestrels depart more with tailwinds in exploratory flights early in the season, while there is a spurious coincidence in direction to preferred foraging patches and dominant wind direction at the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.