In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance.
The dielectric breakdown at metal-oxide interfaces is a critical electronic device failure mechanism. Electronic tunneling through dielectric layers is a well-accepted explanation for this phenomenon. Theoretical band alignment studies, providing information about tunneling, have already been conducted in the literature for metal-oxide interfaces. However, most of the time materials were assumed defect free. Oxygen vacancies being very common in oxides, their effect on band lineup is of prime importance in understanding electron tunneling in realistic materials and devices. This work explores the effect of oxygen vacancy and oxygen di-vacancy at the Al/SiO 2 interface on the band line up within Density Functional Theory using PBE0 hybrid exchange and correlation functional. It is found that the presence of defects at the interface, and their charge state, strongly alters the band line up.
This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s−1, with an accuracy of 0.1 m s−1 at low speeds and 0.5 m s−1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.
A number of electronic devices involve metal/oxide interfaces in their structure where the oxide layer plays the role of electrical insulator. As the downscaling of devices continues, the oxide thickness can spread over only a few atomic layers, making the role of interfaces prominent on its insulating properties. The prototypical Al/SiO metal/oxide interface is investigated using first principle calculations, and the effect of the interfacial atomic bonding is evidenced. It is shown that the interface bonding configuration critically dictates the mechanical and electronic properties of the interface. Oxygen atoms are found to better delimit the oxide boundaries than cations. Interfacial cation-metal bonds allow the metal potential to leak inside the oxide layer, without atomic diffusion, leading to a virtual oxide thinning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.