Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease. The current standard treatment with glucocorticoids (GCs) leads to many adverse effects, and its effectiveness is questionable. Thus, it is critical and urgent to find new drug(s) for treatment of IPF. Baicalin (BAI) is an attractive candidate for this purpose. Herein, utilizing shotgun lipidomics, we revealed that IPF could lead to a lipid disorder of the liver in an animal model induced by bleomycin and confirmed through histopathological studies of the lung. Lipidomics further demonstrated that this disorder could virtually be corrected after treatment with BAI, but not with dexamethasone (DEX) (a commonly used GC for treatment of IPF). In contrast, the treatment with DEX did not improve IPF but led to tremendous alterations in hepatic lipidomes and accumulation of fat in the liver, which was very different from the lipid disorder induced by IPF. The underpinning mechanisms of the IPF-resultant lipid disorder and DEX-induced lipotoxicity as revealed by shotgun lipidomics were extensively discussed. Taken together, the current study showed that IPF could lead to hepatic lipid disorder, which can be treated with BAI, and demonstrated that lipidomics could be a powerful tool for drug screening.
Wenjinghuoluo prescription, a traditional Chinese medicine compound treatment of rheumatoid arthritis characterized by wind–cold–dampness arthralgia, contains five herbs, namely, C. cassia Presl., Cinnamomum cassia Presl., Paeonia lactiflora Pall., Saposhnikovia divaricate (Turcz.) Schischk., and Clematis chinensis Osbeck. We have reported that WJHL could inhibit the production of inflammatory mediators in immune cells. This study explored the effect and mechanism of WJHL on collagen-induced arthritis mice. WJHL could significantly improve clinical arthritic conditions; inhibit bone erosion and osteophyte formation in joints; decrease expression of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-17); reduce protein expression levels of JAK2, p-JAK2, STAT3, p-STAT3 and gene expression levels of JAK2, STAT3, IL-17A, RORγt mRNA; elevate osteoprotegerin and Foxp3 mRNA levels and lower Th17 cell proportions in splenocytes. Results suggest that WJHL, specifically regulating the JAK2/STAT3 pathway and Th17 cells, may be a promising herbal medicine candidate for the treatment of RA.
Cornus officinalis Sieb et. Zucc and Paeonia lactiflora Pall. have exhibited favorable therapeutic effects against rheumatoid arthritis (RA), but the specific mechanisms of their active compounds remain unclear. The aim of this study was to comprehensively analyze the therapeutic mechanisms of selected active compounds in Cornus officinalis (loganin, ursolic acid, and morroniside) and Paeonia lactiflora (paeoniflorin and albiflorin) via network pharmacology. The pharmacological properties of the five active compounds were evaluated and their potential target genes were identified by database screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analysis were performed to determine the enriched molecular pathways associated with the active compounds. Using network pharmacology tools, eight genes (IL1β, VEGFA, STAT3, TP53, IL6, TNF, FOS, and LGALS3) were identified as common targets between RA and the five active compounds. Molecular docking simulation revealed the compound-target relationship between the five active compounds and three selected targets from the eight common ones (LGALS3, STAT3, and VEGFA). The compound-target relationships were subsequently validated via preliminary in vivo experiments in a rat model of collagen-induced arthritis. Rats subjected to collagen-induced arthritis showed increased protein expression of LGALS3, STAT3, and VEGFA in synovial tissues. However, treatment using Cornus officinalis or/and Paeonia lactiflora, as well as their most drug-like active compounds (ursolic acid or/and paeoniflorin, respectively, identified based on pharmacological properties), attenuated the expression of these three targets, as previously predicted. Collectively, network pharmacology allowed the pharmacological and molecular roles of Cornus officinalis and Paeonia lactiflora to be systematically revealed, further establishing them as important candidate drugs in the treatment and management of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.