Perovskite
quantum dots (PeQDs) have been regarded as an alternative
to traditional phosphor color converters in the backlit display to
improve the color gamut and rendition of LCD. However, the pending
barriers of aggregation quenching and structure instability are hindering
their practical applications. Herein, high-quality CsPbX3 (X = Br, Br/I) PeQDs were in situ precipitated inside glass to produce
nanocomposites with superior optical performance and stability. The
highest photoluminescence quantum yield (PLQY) of ∼100% for
CsPbBr3@glass is ascribed to the elimination of the inner
filter effect via a physical dilution approach to restore its apparent
value to an intrinsic one, and the exceptional photostability and
water/heat resistance are benefited from their effective isolation
from the external environment by the surrounding glass network units.
Employing the PeQDs@glass@PDMS monolithic film, a high-performance
backlit LCD was designed, and its color gamut reached 152% of commercial
LCD and 103% of NTSC, demonstrating a great potential in the optoelectronic
industry.
Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-perovskite (DP) semiconductor, expanding the spectral range from visible (Vis) to near-infrared (NIR) and improving the photoluminescence quantum yield (PLQY). After multidoping with Nd, Yb, Er and Tm, Bi/Ln:Cs2AgInCl6 yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of ~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f–4f transitions of the Ln3+ dopants. Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes. To avoid adverse energy interactions between the various Ln3+ ions in a single DP host, a heterogeneous architecture was designed to spatially confine different Ln3+ dopants via a “DP-in-glass composite” (DiG) structure. This bottom-up strategy endowed the prepared Ln3+-doped DIG with a high PLQY of 40% (nearly three times as high as that of the multidoped DP) and superior long-term stability. Finally, a compact Vis–NIR ultrabroadband (400~2000 nm) light source was easily fabricated by coupling the DiG with a commercial UV LED chip, and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.
The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide‐doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide‐doped core@multishell nanoarchitecture allows the generation of multicolor dual‐modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd‐assisted lattices. It is experimentally proven that multiple visualized anti‐counterfeit and information encryption with facile decryption and authentication using screen‐printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.