Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.
As a highly automated carrying vehicle, an automated guided vehicle (AGV) has been widely applied in various industrial areas. The collision avoidance of AGV is always a problem in factories. Current solutions such as inertial and laser guiding have low flexibility and high environmental requirements. An INS (inertial navigation system)-UWB (ultra-wide band) based AGV collision avoidance system is introduced to improve the safety and flexibility of AGV in factories. An electronic map of the factory is established and the UWB anchor nodes are deployed in order to realize an accurate positioning. The extended Kalman filter (EKF) scheme that combines UWB with INS data is used to improve the localization accuracy. The current location of AGV and its motion state data are used to predict its next position, decrease the effect of control delay of AGV and avoid collisions among AGVs. Finally, experiments are given to show that the EKF scheme can get accurate position estimation and the collisions among AGVs can be detected and avoided in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.