We demonstrate ultra-thin, fine-tunable optical coatings with enhanced color purity based on highly absorbent porous media on a metal substrate. We show that the color range provided by these ultra-thin film coatings can be extended by making the absorptive dielectric layer porous. Oblique angle deposition (OAD) of a thin (10-25 nm) germanium (Ge) film by e-beam evaporation onto a thick gold substrate yields controlled porosity. Reflectance spectra and color representations from both calculations and experiments verify the enhancement of resonance tunability and color purity in the nano-tailored coatings. Angle independent reflection properties, and the applicability of such porous Ge on various metal substrates, indicate the strength of these concepts.
Terahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., α-lactose (≥95%, w/w) and β-lactose (≤4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace β-anomer impurity. Its estimated sensitivity was ~0.147 attomoles in ~8 × 10−4 μm3 interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.
In this paper, we systematically investigated tailoring bolometric properties of a proposed heat-sensitive TiOx/Ti/TiOx tri-layer film for a waveguide-based bolometer, which can play a significant role as an on-chip detector operating in the mid-infrared wavelength range for the integrated optical gas sensors on Ge-on-insulator (Ge-OI) platform. As a proof-of-concept, bolometric test devices with a TiOx single-layer and TiOx/Ti/TiOx tri-layer films were fabricated by varying the layer thickness and thermal treatment condition. Comprehensive characterization was examined by the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses in the prepared films to fully understand the microstructure and interfacial properties and the effects of thermal treatment. Quantitative measurements of the temperature- and time-dependent resistance variations were conducted to deduce the minimum detectable change in temperature (ΔTmin) of the prepared films. Furthermore, based on these experimentally obtained results, limit-of-detection (LoD) for the carbon dioxide gas sensing was estimated to demonstrate the feasibility of the proposed waveguide-based bolometer with the TiOx/Ti/TiOx tri-layer film as an on-chip detector on the Ge-OI platform. It was found that the LoD can reach ∼3.25 ppm and/or even lower with the ΔTmin of 11.64 mK in the device with the TiOx/Ti/TiOx (47/6/47 nm) tri-layer film vacuum-annealed at 400 °C for 15 min, which shows great enhancement of ∼7.7 times lower value compared to the best case of TiOx single-layer films. Our theoretical and experimental demonstration for tailoring bolometric properties of a TiOx/Ti/TiOx tri-layer film provides fairly useful insight on how to improve LoD in the integrated optical gas sensor with the bolometer as an on-chip detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.