In this paper, H ∞ disturbance attenuation control and sliding mode disturbance estimation and compensation control of a magnetic levitation system are studied. A magnetic levitation apparatus is established, and its model is measured. Then the system model is feedback linearized. A H ∞ controller is then designed. For comparison, a sliding mode controller and a PID controller also were designed. Some experiments were performed to compare the performance of the H ∞ controller, the sliding mode controller and the PID controller.
This paper presents the sliding-mode control of a three-degrees-offreedom nanopositioner (Z , x , y ). This nanopositioner is actuated by piezoelectric actuators. Capacitive gap sensors are used for position feedback. In order to design the feedback controller, the open-loop characteristics of this nanopositioner are investigated. Based on the results of the investigation, each pair of piezoelectric actuators and corresponding gap sensors is treated as an independent system and modeled as a first-order linear model coupled with hysteresis. When the model is identified and the hysteresis nonlinearity is linearized, a linear system model with uncertainty is used to design the controller. When designing the controller, the sliding-mode disturbance (uncertainty) estimation and compensation scheme is used. The structure of the proposed controller is similar to that of a proportional integral derivative controller. Thus, it can be easily implemented. Experimental results show that 3-nm tracking resolution can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.