The generation of random numbers via quantum processes is an efficient and reliable method to obtain true indeterministic random numbers that are of vital importance to cryptographic communication and large-scale computer modeling. However, in realistic scenarios, the raw output of a quantum random-number generator is inevitably tainted by classical technical noise. The integrity of the device can be compromised if this noise is tampered with, or even controlled by some malicious party. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness that is quantified by min-entropy conditioned on this classical noise. We present a method for maximizing the conditional min-entropy of the number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. The spectral response of the detection system shows the potential to deliver more than 70 Gbit/s of random numbers in our experimental setup.
Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example, in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations, which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen (EPR) steering plays a key role in one-sided device-independent (1sDI) quantum key distribution (QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 and 3.5 km of optical fiber transmission, respectively. We also engage in detailed modeling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CV-QKD systems in a significantly more secure setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.