In this work, a networked MoS2/CNT nanocomposite has been synthesized by a facile solvothermal method. The as-prepared sample exhibits high catalytic activity for electrocatalytic hydrogen evolution.
Well-defined ultrathin MoS2 nanoplates are developed by a facile solvent-dependent control route from single-source precursor for the first time. The obtained ultrathin nanoplate with a thickness of ~ 5 nm features high density of basal edges and abundant unsaturated active S atoms. The multistage growth process is investigated and the formation mechanism is proposed. Ultrathin MoS2 nanoplates exhibit an excellent activity for hydrogen evolution reaction (HER) with a small onset potential of 0.09 V, a low Tafel slope of 53 mV dec(-1), and remarkable stability. This work successfully demonstrates that the introduction of unsaturated active S atoms into ultrathin MoS2 nanoplates for enhanced electrocatalytic properties is feasible through a facial one-step solvent control method, and that this may open up a potential way for designing more efficient MoS2-based catalysts for HER.
Abstract:With the impending fossil fuel crisis, the search for and development of alternative chemical/material substitutes is pivotal in reducing mankind's dependency on fossil resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.