Inflammatory responses mediated by macrophages play a role in tissue repair. However, it is unclear whether the repair in the donor site after liposuction would have any effects on fat graft retention in the recipient site. This study is designed to evaluate the effects of a macrophage‐mediated inflammatory response in donor sites on long‐term retention of fat grafting. In this study, mice were randomly divided into two groups. One underwent simulated liposuction, called the fat procurement plus grafting (Pro‐Grafting) group, and the other underwent sham surgery, called the fat grafting only (Grafting Only) group. The prepared fat (0.3 ml each) was engrafted and cellular events over a 90‐day period were assessed. We found macrophages were infiltrated into adipose tissue at the recipient site in the Grafting Only group within 7 days and the repair essentially completed within 30 days. By contrast, few macrophages infiltrated the recipient site in the Pro‐Grafting group within 7 days and the entire remodeling process took 30 days longer in the Pro‐Grafting than the Grafting Only group. Moreover, C‐reactive protein levels were immediately upregulated after surgery, and the inflammatory factors' expression was higher at the donor rather than the recipient site. However, the repair processes and the long‐term retention rate became normal when the adipose tissue was grafted after the donor site did not require macrophages for repair. Therefore, we suggest higher inflammatory factors promote macrophage infiltration and the adipose tissue regeneration process at the donor site. This process is delayed at the recipient site, which may affect long‐term retention of fat grafts.
Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared with those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared with those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction.
Background Mesenchymal stem cells (MSCs) have therapeutic potential for atopic dermatitis (AD) owing to their immunoregulatory effects. However, the underlying mechanisms associated with the therapeutic efficacy of MSCs on AD are diverse and related to both cell type and delivery method. Objectives This study investigated the therapeutic effect and mechanisms of adipose-derived stem cells (ADSCs) on AD using an ovalbumin (OVA)-induced AD mouse model. Methods AD mice were subcutaneously injected with mouse ADSCs, cortisone, or PBS, and the therapeutic effects were determined by gross and histological examinations and serum IgE levels. Additionally, qPCR, RNA-sequencing analyses of skin samples and co-culture of ADSCs and Th17 cells were conducted to explore the underlying therapeutic mechanisms. Results ADSCs treatment attenuated the AD pathology, decreased the serum IgE levels, and decreased mast cells infiltration in the skin of the model mice. Moreover, tissue levels of IL-4R and Th17-relevant products (IL-17A, CCL20, and MMP12) were suppressed in the ADSC- and cortisone-treated groups. Genomics and bioinformatics analyses demonstrated significant enrichment of inflammation-related pathways in the downregulated genes of the ADSC- and cortisone-treated groups, specifically the IL-17 signaling pathway. Co-culture experiments revealed that ADSCs significantly suppressed the proliferation of Th17 cells and the expression of proinflammatory cytokines (IL-17A and RORγT). Furthermore, expression levels of PD-L1, TGF-β, and PGE2 were significantly upregulated in co-cultured ADSCs relative to those in monocultured ADSCs. Conclusion ADSCs ameliorate OVA-induced AD in mice mainly by downregulating IL-17 secretion of Th17 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.