Rationale: Repeated methamphetamine (METH) exposure induces long-term cognitive deficits and pathological drug-associated memory that can be disrupted by manipulating memory reconsolidation and extinction. The nucleus accumbens (NAc) is the key region of the brain reward system and predominantly consists of two subtypes of medium spiny neurons (MSNs) based on the expression of D1 or D2 dopamine receptors (D1-MSNs or D2-MSNs). Spine structural plasticity in the NAc is critical for the acquisition, reconsolidation and extinction of drug-associated memory. However, the molecular mechanisms underlying METH-associated memory and spine remodelling in each type of MSNs in the NAc remain unknown. Here, we explored whether Rac1 in the NAc mediates METH-associated contextual memory and spine remodelling.Methods: Pharmacological and genetic manipulations of Rac1 were used to investigate its role during the acquisition, reconsolidation and extinction of METH-associated contextual memory. Recombinant adeno-associated viruses expressing mCherry under the control of the dopamine D1 receptor gene promoter (Drd1-mCherry) or dopamine D2 receptor gene promoter (Drd2-mCherry) were used to specifically label D1-MSNs or D2-MSNs.Results: Using viral-mediated gene transfer, we demonstrated that decreased Rac1 activity was required for the acquisition of METH-associated contextual memory and the METH-induced increase in thin spine density, whereas increased Rac1 signalling was important for the extinction of METH-associated contextual memory and the related elimination of thin spines. Moreover, the increase of dendritic spines was both found in D1-MSNs and D2-MSNs during the acquisition process, but extinction training selectively decreased the spine density in D1-MSNs. Interestingly, Rac1 was responsible for METH-induced spine plasticity in D1-MSNs but not in D2-MSNs. Additionally, we found that microinjection of a Rac1 inhibitor or activator into the NAc was not sufficient to disrupt reconsolidation, and the pharmacological activation of Rac1 in the NAc facilitated the extinction of METH-associated contextual memory. Regarding cognitive memory, decreased Rac1 activity improved the METH-induced impairment in object recognition memory.Conclusion: Our findings indicate that Rac1 plays opposing roles in the acquisition and extinction of METH-associated contextual memory and reveal the cell-specific role of Rac1 in METH-associated spine remodelling, suggesting that Rac1 is a potential therapeutic target for reducing relapse in METH addiction and remediating METH-induced recognition memory impairment.
Synaptic plasticity plays a critical role in cocaine addiction. The dopamine D1 and D3 receptors differentially regulate the cocaine-induced gene expression, structural remodeling and behavioral response. However, how these two receptors coordinately mediate the ultra-structural changes of synapses after cocaine exposure and whether these changes are behaviorally relevant are still not clear. Here, using quantitative electron microscopy, we show that D1 and D3 receptors have distinct roles in regulating cocaine-induced ultra-structural changes of synapses in the nucleus accumbens and caudoputamen. Pre-treatment of cocaine-treated mice with D3 receptor antagonist NGB2904 resulted in an increase in the ratio of total and asymmetric synapse to neuron and in the length of postsynaptic densities, compared with cocaine treatment alone. In contrast, pre-treatment of cocaine-treated mice with D1 receptor antagonist SCH23390 caused a reduction in synapse-to-neuron ratio and in postsynaptic densities length. Similarly, NGB2904 and SCH23390 showed opposite/differential effects on cocaine-induced structural plasticity, conditioned place preference and locomotor activity and signaling activation, including the activation of ERK, CREB and NR1 and the expression of c-fos and Cdk5. Therefore, we provide direct electron microscopy evidence that dopamine D1 and D3 receptors reciprocally regulate the ultra-structural changes of synapses following chronic exposure to cocaine. In addition, our data suggest that D1 and D3 receptors may regulate cocaine-induced ultra-structural changes and behavior responses by impact on structural plasticity and signaling transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.