An ultra-broadband supercontinuum was generated in a short piece of step-index germania-core fiber using a fiber laser with a peak power of 4.4 kW. The pure germania core made this fiber capable of propagating light towards the desirable mid-infrared region. The spectral broadening characteristics towards the mid-infrared region under different lengths of germania-core fiber were investigated using pump pulses of 4.4 kW and 1.1 ns at 1550 nm. The large nonlinear refractive index of germania and the small core size of germania-core fiber produced a nonlinear coefficient as high as 11.8 (W km)-1 at 1550 nm, which was beneficial for supercontinuum generation. The pump wavelength was located in the anomalous dispersion regime and close to the zero dispersion wavelength of this germania-core fiber, 1.426 μm. Eventually, an ultra-broadband supercontinuum source with a spectrum spanning from 0.6 to 3.2 μm was obtained and had a total output power of 350 mW at an optimized germania-core fiber length of 0.8 m. This work is the first demonstration, to the best of our knowledge, of a germania-core fiber-based ultra-broadband supercontinuum source that spans from the visible region to the mid-infrared region.
A 0.8 to 4.5 μm highly stable all-fiber spliced mid-infrared supercontinuum (SC) source was presented. The joint between the single-mode (SM) pump silica fiber and the ZBLAN fiber (ZrF4 - BaF2 - LaF3 - AlF3 - NaF, a type of fluoride fiber) was fusion spliced, which greatly improved the SC's stability. The low-loss splicing was guaranteed by the similar mode field areas of the fundamental mode LP(01) of the silica and ZBLAN fibers. At the splicing joint the ZBLAN fiber enveloped the silica fiber, thus increasing the robustness of the splice. A low splicing loss of less than 0.1 dB was calculated, which ensured that the whole SC source was very reliable. The SC had a maximal average power of 550.8 mW with a 1.5 dB spectral bandwidth ranging from 2642 to 4065 nm. In particular, the SC power for λ>3.8 μm was measured to be 116.1 mW with a power ratio of ∼21.1% of the total SC power. Perfect Gaussian beam profiles of the SC source demonstrated its SM operation. Over 12 h of continuous operation of this SC source showed its outstanding power stability with a root mean square variation of 0.59%, which also demonstrated the high quality of the fusion spliced joint.
In this Letter, a high-power supercontinuum (SC) laser source which spanned from 1.9 to 3.6 μm with an all-fiber configuration was reported. This SC laser was obtained by concatenating a thulium-doped fiber amplifier (TDFA) and a 12 cm long highly nonlinear germania fiber. A 1.9-2.7 μm SC laser from the TDFA was spectrally broadened continuously into the mid-infrared region (>3 μm) in the following germania fiber. When the repetition rate was 2 MHz, the obtained SC laser had a maximum output power of 6.12 W with an optical conversion efficiency of 15.3% with respect to the TDFA pump power. The SC laser had a spectral bandwidth of 1506 nm ranging from 1944 to 3450 nm at the -20 dB level. The SC power with wavelengths >3 μm was 2.9 W, corresponding to a high power ratio of 47.4% in the mid-infrared region. The achieved power ratio in the mid-infrared region, as well as the long wavelength cutoff, to the best of our knowledge, were the best results ever reported in germania fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.