In this contribution we demonstrate goniometric scatterometry measurements of gratings with linewidths down to 25 nm on silicon wafers with an inspection wavelength of 266 nm. For each sample, measurements have been performed in four different configurations and the obtained data have been evaluated in parallel. As results we present the reconstruction of the complete cross-section profile. We introduce a novel geometry parameterization which overcomes some limitations of the default parameterization. A co-variance analysis of the parameters is offered to indicate the soundness of the results. A qualitative comparison with cross-section scanning electron microscope (SEM) images shows excellent agreement.
Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has recently started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology and to establish scatterometry as a traceable and absolute metrological method for dimensional measurements. This requires a thorough investigation of the influence of all significant sample, tool and data analysis parameters, which affect the scatterometric measurement results. For this purpose and to improve the tool matching between scatterometers, CD-SEMs and CD-AFMs, experimental and modelling methods will be enhanced. The different scatterometry methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. To transfer traceability to industrial applications of scatterometry an important step and one final goal of this project is the realisation of different waferbased reference standard materials for calibration of scatterometers. The approaches to reach these goals and first design considerations and preliminary specification of the scatterometry standards are presented and discussed.
Scatterometry is a common tool for the dimensional characterization of periodic nanostructures. It is an indirect measurement method, where the dimensions and geometry of the structures under test are reconstructed from the measured scatterograms applying inverse rigorous calculations. This approach is numerically very elaborate so that usually a number of approximations are used. The influence of each approximation has to be analysed to quantify its contribution to the uncertainty budget. This is a fundamental step to achieve traceability. In this paper, we experimentally investigate two common approximations: the effect of a finite illumination spot size and the application of a more advanced structure model for the reconstruction. We show that the illumination spot size affects the sensitivity to sample inhomogeneities but has no influence on the reconstruction parameters, whereas additional corner rounding of the trapezoidal grating profile significantly improves the reconstruction result.
The dark-field microscopy method with alternating grazing incidence UV illumination (UV-AGID) developed at Physikalisch-Technische Bundesanstalt offers the possibility of measuring individual isolated line structures with linewidths down to the sub-wavelength regime. In contrast, scatterometry is able and already widely used to measure average dimensional parameters of periodic structures down to the deep sub-wavelength regime. Both methods can be used for dimensional measurements of micro-and nanostructures, in particular the critical dimensions (CDs) on wafers or photomasks in the semiconductor industry, complementing each other favourably. Based on numerical simulations, we have investigated the ultimate limits of these two methods in the deep sub-wavelength regime. It has been shown that AGID microscopy in the DUV spectral range is in principle capable of measuring line structures with CDs down to a few 10 nm, depending on the structure material. For scatterometry, no fundamental limit has been observed. In practice, a technical limit due to the limited signal-tonoise ratio is expected for CDs of a few nm in width. RECEIVED
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.