Sulfur hexafluoride (SF6) is an excellent tracer of large‐scale atmospheric transport, because it has slowly increasing sources mostly confined to northern midlatitudes, and has a lifetime of thousands of years. We have simulated the emissions, transport, and concentration of SF6 for a 5‐year period, and compared the results with atmospheric observations. In addition, we have performed an intercomparison of interhemispheric transport among 11 models to investigate the reasons for the differences among the simulations. Most of the models are reasonably successful at simulating the observed meridional gradient of SF6 in the remote marine boundary layer, though there is less agreement at continental sites. Models that compare well to observations in the remote marine boundary layer tend to systematically overestimate SF6 at continental locations in source regions, suggesting that vertical trapping rather than meridional transport may be a dominant control on the simulated meridional gradient. The vertical structure of simulated SF6 in the models supports this interpretation. Some of the models perform quite well in terms of the simulated seasonal cycle at remote locations, while others do not. Interhemispheric exchange time varies by a factor of 2 when estimated from 1‐dimensional meridional profiles at the surface, as has been done for observations. The agreement among models is better when the global surface mean mole fraction is used, and better still when the full 3‐dimensional mean mixing ratio is used. The ranking of the interhemispheric exchange time among the models is not sensitive to the change from station values to surface means, but is very sensitive to the change from surface means to the full 3‐dimensional tracer fields. This strengthens the argument that vertical redistribution dominates over interhemispheric transport in determining the meridional gradient at the surface. Vertically integrated meridional transport in the models is divided roughly equally into transport by the mean motion, the standing eddies, and the transient eddies. The vertically integrated mass flux is a good index of the degree to which resolved advection vs. parameterized diffusion accomplishes the meridional transport of SF6. Observational programs could provide a much better constraint on simulated chemical tracer transport if they included regular sampling of vertical profiles of nonreactive trace gases over source regions and meridional profiles in the middle to upper troposphere. Further analysis of the SF6 simulations will focus on the subgrid‐scale parameterized transports.
The use of diagrams in mathematics has traditionally been restricted to guiding intuition and communication. With rare exceptions such as Peirce's α and β systems, purely diagrammatic formal reasoning has not been in the mathematician's or logician's toolkit. This paper develops a purely diagrammatic reasoning system of 'spider diagrams'that builds on Euler, Venn and Peirce diagrams. The system is known to be expressively equivalent to first-order monadic logic with equality. Two levels of diagrammatic syntax have been developed: an 'abstract' syntax that captures the structure of diagrams, and a 'concrete' syntax that captures topological properties of drawn diagrams. A number of simple diagrammatic transformation rules are given, and the resulting reasoning system is shown to be sound and complete.
Abstract— Anchovy and mackerel eggs and yolk‐sac larvae were exposed to UV radiation in the bioactive band of wavelengths between 280 and 320 nm. the UV‐B region of the spectrum. Irradiation levels were based upon predicted UV‐B increases that would result from anthropogenic diminution of Earth's protective ozone shell. Dose‐response relationships for mortality and histological and morphological effects were determined for two different spectral energy compositions, using FS‐40 sunlamps and two filter combinations. Anchovy were more sensitive than mackerel to UV‐B. Data for anchovy were analyzed in terms of DNA‐effective doses, i.e. the integrated spectral thence (in J/m2/nm) with the energy at each nm weighted by its effectiveness relative to the Setlow generalized DNA action spectrum. Fifty per cent of anchovy survived a cumulative DNA effective dose of 1150J'm‐2 over a 4‐day period. In the surviving larvae. irradiation induced lesions in the brain and eye. caused marked dispersion of pigment within melanophores and retarded growth and development. At the lowest dosage used. 760 (J. m‐2)DNA, growth was retarded and brain lesions occurred in anchovy. Calculations of Smith and Baker (in this issue) indicate that in clear ocean water a significant incidence of lesions and retardation of growth in anchovy could occur at the surface at a 25%, reduction in ozone and down to 3.5 m at a 50% reduction. Eggs and larvae of anchovy occur at these depths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.