This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.
This study elucidates the correlation among conductivity of graphene and interface aspects in GaN light-emitting diodes (LEDs). Using a multilayer graphene of low sheet resistance, it is demonstrated that graphene alone can make ohmic contact with p-GaN without necessitating additional interlayer. Large-area blue LED with relatively low contact resistance in the order of 10−2 ohm-cm2 and improved forward voltage of 3.2 ± 0.1 V was realized irrespective of the use of the interlayer. The results from parallel evaluation experiments performed by varying the layer numbers of graphene with ultrathin NiOx interlayer revealed that the poor lateral conductivity of monolayer or few layer graphene can be well compensated by the interlayer. A combination of three layer graphene and NiOx offered device with enhanced electro-optical performance. But the Schottky barrier associated with the inadequate adhesion of transferred graphene dominates all the benefits and becomes a major bottleneck preventing the formation of low resistance stable ohmic contact.
We investigated the effect of double air gaps embedded between sapphire and undoped GaN on the strain reduction in the InGaN/GaN-based green LED structure. Selective GaN growth and electrochemical etching were exploited to achieve embedded air gaps. Raman spectroscopy and photoluminescence were employed to demonstrate the relation between strain relaxation and indium incorporation. The double air gaps caused strain relaxation and led to a higher In incorporation in InGaN layers, which in turn caused a redshift of the PL spectra. As a result, three different peak wavelengths according to the existence of air gaps were observed. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.