The anisotropic growth of one-dimensional or filamental crystals in the form of microwires and nanowires constitutes a rich domain of epitaxy and newly enabled applications at different length and size scales. Significant progress has been accomplished in controlling the growth, morphology, and properties of semiconductor nanowires and consequently their device level performance. The objective of this review is two-fold: to highlight progress up to date in nanowire doping and to discuss the remaining fundamental challenges. We focus on the most common semiconductor nanowire growth mechanism, the vapor-liquid-solid growth, and the perturbation of its kinetic and thermodynamic aspects with the introduction of dopants. We survey the origins of dopant gradients in nanowire growth and summarize quantification techniques for dopants and free-carrier concentrations.We analyze the morphological changes due to dopants and the influence of growth droplet seeds on composition and morphology and review growth aspects and alternatives that can mitigate these effects. We then summarize some of the remaining issues pertaining to dopant control in nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.