Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O 2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche. Keywords Regenerative medicine • Aging diseases • Diabetes • Lupus • Secretome • Conditioned medium • Extracellular vesicles • Exosomes Abbreviations 2D Two-dimensional 3D Three-dimensional AD Adipose-derived AD-MSC Adipose-derived mesenchymal stem cell Ad-FKN Adenoviral vector fractalkine gene BM Bone marrow BM-MSC Bone marrow-derived mesenchymal stem cell bBM-MSC Bovine bone marrow-derived mesenchymal stem cell BNDF Brain-derived neurotrophic factor CD Cluster of differentiation cGMP Current good manufacturing practice Cellular and Molecular Life Sciences Luis A. Costa and Noemi Eiro contributed equally to this work.
Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment.
BackgroundDry Eye Disease (DED) is a multifactorial disease, with a high prevalence, that can have a great impact on the quality of life of patients. The first step of treatment includes the use of lacrimal substitutes composed of polymers, possible to associate osmoprotectant agents to the lacrimal substitutes. The aim of this article is to analyze the properties of the combination of hyaluronic acid (HA), carmellose, and osmoprotectors (Optava Fusion®; Allergan, Inc., Irvine, CA, USA) on DED. General considerations on the use of artificial tears are also proposed.MethodsA group of ophthalmologists, experts in the management of the ocular surface, analyzed different aspects related to DED; among them, the use of artificial tears in general and the properties of the combination of HA, carmellose, and osmoprotectors, in particular, were discussed. A review of the literature was carried out, which included different articles published in Spanish, English, and French until April 2017.ConclusionsDED is a common chronic pathology that usually requires sustained treatment. In addition, the combination of HA, carmellose, and osmoprotectors has proven to be effective in the treatment of symptoms and signs of dry eye by the synergistic action of all its components. This review provides key elements to help ophthalmologists who begin in the management of DED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.