Objective. Therapeutic efficacy of deep brain stimulation (DBS) in both established and emerging indications, is highly dependent on accurate lead placement and optimized clinical programming. The latter relies on clinicians’ experience to search among available sets of stimulation parameters and can be limited by the time constraints of clinical practice. Recent innovations in device technology have expanded the number of possible electrode configurations and parameter sets available to clinicians, amplifying the challenge of time constraints. We hypothesize that patient specific neuroimaging data can effectively assist the clinical programming using automated algorithms. Approach. This paper introduces the DBS Illumina 3D algorithm as a tool which uses patient-specific imaging to find stimulation settings that optimizes activating a target area while minimizing the stimulation of areas outside the target that could result in unknown or undesired side effects. This approach utilizes preoperative neuroimaging data paired with the postoperative reconstruction of the lead trajectory to search the available stimulation space and identify optimized stimulation parameters. We describe the application of this algorithm in three patients with treatment-resistant depression who underwent bilateral implantation of DBS in subcallosal cingulate cortex and ventral capsule/ventral striatum using tractography optimized targeting with an imaging defined target previously described. Main results. Compared to the stimulation settings selected by the clinicians (informed by anatomy), stimulation settings produced by the algorithm that achieved similar or greater target coverage, produced a significantly smaller stimulation area that spilled outside the target (P = 0.002). Significance. The DBS Illumina 3D algorithm is seamlessly integrated with the clinician programmer software and effectively and rapidly assists clinicians with the analysis of image based anatomy, and provides a starting point to search the highly complex stimulation parameter space and arrive at the stimulation settings that optimize activating a target area.
Objective. Researchers are developing biomedical devices with embedded closed-loop algorithms for providing advanced adaptive therapies. As these devices become more capable and algorithms become more complex, tasked with integrating and interpreting multi-channel, multi-modal electrophysiological signals, there is a need for flexible bench-top testing and prototyping. We present a methodology for leveraging off-the-shelf audio equipment to construct a biosignal waveform generator capable of streaming pre-recorded biosignals from a host computer. By re-playing known, well-characterized, but physiologically relevant real-world biosignals into a device under test, researchers can evaluate their systems without the need for expensive in vivo experiments. Approach. An open-source design based on the proposed methodology is described and validated, the NeuroDAC. NeuroDAC allows for 8 independent channels of biosignal playback using a simple, custom designed attenuation and buffering circuit. Applications can communicate with the device over a USB interface using standard audio drivers. On-board analog amplitude adjustment is used to maximize the dynamic range for a given signal and can be independently tuned for each channel. Main results. Low noise component selection yields a no-signal noise floor of just 5.35 ± 0.063. NeuroDAC’s frequency response is characterized with a high pass −3 dB rolloff at 0.57 Hz, and is capable of accurately reproducing a wide assortment of biosignals ranging from EMG, EEG, and ECG to extracellularly recorded neural activity. We also present an application example using the device to test embedded algorithms on a closed-loop neural modulation device, the Medtronic RC+S. Significance. By making the design of NeuroDAC open-source we aim to present an accessible tool for rapidly prototyping new biomedical devices and algorithms than can be easily modified based on individual testing needs.
ClinicalTrials.gov Identifiers: NCT04281134, NCT03437928, NCT03582891
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.