Hexaploids, a group of organisms containing three complete sets of chromosomes in a single nucleus, are of utmost importance to evolutionary studies and breeding programs. Many studies have focused on hexaploid linkage analysis and QTL mapping in controlled crosses, but little methodology has been developed to reveal how hexaploids diversify and evolve in natural populations. We formulate a general framework for studying the pattern of genetic variation in autohexaploid populations through testing deviation from Hardy–Weinberg equilibrium (HWE) at individual molecular markers. We confirm that hexaploids cannot reach exact HWE, but can approach asymptotic HWE at 8–9 generations of random mating. We derive a statistical algorithm for testing HWE and the occurrence of double reduction for autopolyploids, a phenomenon that affects population variation during long evolutionary processes. We perform computer simulation to validate the statistical behavior of our test procedure and demonstrate its usefulness by analyzing a real data set for autohexaploid chrysanthemum. By extending it to allothexaploids, our test procedure will provide a generic tool for illustrating the genome structure of hexaploids in the quest to infer their evolutionary status and design association studies of complex traits.
Clavicipitoid fungi comprise three families, namely Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae. They are found worldwide and are specialized pathogens of invertebrate, plant and fungal hosts. Over the last decade, morphology-and phylogeny-based studies on clavicipitoid fungi have increased. The latter have revealed that Polycephalomyces, Perennicordyceps and Pleurocordyceps consistently cluster together. These genera are currently considered as members of Ophiocordycipitaceae. Nonetheless, information with regard to their diversity and ecology remains sparse. To fill this gap, we collected 29 fresh specimens from insect and fungal substrates from tropical and subtropical evergreen forests in Thailand and southwestern China. We performed detailed morphological analyses and constructed photoplates for all isolated fungi. We used extensive taxon sampling and a dataset comprising internal transcribed spacer gene region (ITS), small subunit ribosomal RNA gene region (SSU), large subunit rRNA gene region (LSU), translation elongation factor 1-alpha gene region (TEF-1α), RNA polymerase II largest subunit gene region (RPB1) and RNA polymerase II second largest subunit (RPB2) to infer order-, family and genus-level phylogenetic trees. Based on these biphasic analyses, we segregate Polycephalomyces, Perennicordyceps, and Pleurocordyceps from Ophiocordycipitaceae and introduce the new family Polycephalomycetaceae to accomodate these three genera. The majority of species in this family have a vast range of insect and fungal hosts. The sexual morph of Polycephalomycetaceae has stromatic ascomata, long stipes, thick peridium, and cylindrical secondary spores. The asexual morph is characterized by colonies on the host surface or synnemata with stipes on the host, one or two types of phialides, and cylindrical to fusiform conidia. We expand the number of taxa in the new family by introducing seven new species (Polycephalomyces albiramus, Perennicordyceps lutea, Pleurocordyceps parvicapitata, Pleurocordyceps lanceolatus, Pleurocordyceps nutansis, Pleurocordyceps heilongtanensis, Pleurocordyceps vitellina), nine new hosts, and one new combination (Perennicordyceps elaphomyceticola). The results herein hint at a high level of diversity for Polycephalomycetaceae. Future investigations focusing on obtaining additional collections and specimens from different geographical areas would help to reveal not only the extent of the group's diversity, but also resolve its deeper phylogenetic placement.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in plants. They play roles in plant growth and developmental and physiological processes, but less is known about the functions of LRR-RLKs in Medicago truncatula. Our genome-wide analysis revealed 329 LRR-RLK genes in the M. truncatula genome. Phylogenetic and classification analysis suggested that these genes could be classified into 15 groups and 24 subgroups. A total of 321 genes were mapped onto all chromosomes, and 23 tandem duplications (TDs) involving 56 genes were distributed on each chromosome except 4. Twenty-seven M. truncatula LRR-RLK segmental duplication gene pairs were colinearly related. The exon/intron organization, motif composition and arrangements were relatively conserved among members of the same groups or subgroups. Using publicly available RNAseq data and quantitative real-time polymerase chain reaction (qRT-PCR), expression profiling suggested that LRR-RLKs were differentially expressed among different tissues, while some were expressed specifically in the roots and nodules. The expression of LRR-RLKs in A17 and 4 nodule mutants under rhizobial infection showed that 36 LRR-RKLs were highly upregulated in the sickle (skl) mutant [an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant] after 12 h of rhizobium inoculation. Among these LRR-RLKs, six genes were also expressed specifically in the roots and nodules, which might be specific to the Nod factor and involved in autoregulation of the nodulation signal. Our results provide information on the LRR-RLK gene family in M. truncatula and serve as a guide for functional research of the LRR-RLKs.
Cyclins, together with highly conserved cyclin-dependent kinases (CDKs), play an important role in the process of cell cycle in plants, but less is known about the functions of cyclins in legume plants, especially Medicago truncatula. Our genome-wide analysis identified 58, 103, and 51 cyclin members in the M. truncatula, Glycine max, and Phaseolus vulgaris genomes. Phylogenetic analysis suggested that these cyclins could be classified into 10 types, and the CycB-like types (CycBL1-BL8) were the specific subgroups in M. truncatula, which was one reason for the expansion of the B-type in M. truncatula. All putative cyclin genes were mapped onto their own chromosomes of each genome, and 9 segmental duplication gene pairs involving 20 genes were identified in M. truncatula cyclins. Determined by quantitative real-time PCR, the expression profiling suggested that 57 cyclins in M. truncatula were differentially expressed in 9 different tissues, while a few genes were expressed in some specific tissues. Using the publicly available RNAseq data, the expression of Mtcyclins in the wild-type strain A17 and three nodule mutants during rhizobial infection showed that 23 cyclins were highly upregulated in the nodulation (Nod) factor-hypersensitive mutant sickle (skl) mutant after 12 h of rhizobium inoculation. Among these cyclins, six cyclin genes were also specifically expressed in roots and nodules, which might play specific roles in the various phases of Nod factor-mediated cell cycle activation and nodule development. Our results provide information about the cyclin gene family in legume plants, serving as a guide for further functional research on plant cyclins.
Background Human immunodeficiency virus type 1 (HIV-1) genetic diversity and pre-treatment drug resistance (PDR) are major barriers to successful antiretroviral therapy (ART). In China, sexual intercourse is the most frequent route of HIV-1 transmission. However, few studies have analyzed PDR and transmission networks in detail among individuals in China with acute HIV-1 infection and their sexual contacts. Methods A cross-sectional study was conducted in Baoding City, Hebei Province, China from 2019–2020. CD4 T cell counts and viral loads were assessed and a HIV-1 genotypic PDR assay was developed in-house. Transmission networks were visualized using Cytoscape with a threshold genetic distance of 0.015 among HIV-1 subtypes. Results From 139 newly diagnosed and drug-naïve individuals with HIV-1, 132 pol gene sequences were obtained and revealed eight HIV-1 subtypes. Circulating recombinant form (CRF)01_AE was the most frequent subtype (53.0%, 70/132) followed by CRF07_BC (26.5%, 35/132), B (13.6%, 18/132), unique recombinant forms (2.3%, 3/132), CRF55_01B (1.5%, 2/132), CRF103_01B (1.5%, 2/132), CRF65_cpx (0.8%, 1/132), and C (0.8%, 1/132). A total of 47 pol gene sequences were used to generate 10 molecular transmission networks. The overall prevalence of PDR was 7.6% and that of PDR to non-nucleotide reverse transcriptase inhibitors was 6.1%. Of three transmission networks for PDR, two were closely associated with Beijing and Tianjin, while another was restricted to sequences determined in this study. Conclusions These results demonstrate that during acute HIV-1 infection, PDR is transmitted in dynamic networks. This suggests that early detection, diagnosis, surveillance, and treatment are critical to effectively control HIV-1 spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.