IMPORTANCE Negative symptoms represent a substantial burden in schizophrenia. Although preliminary studies have suggested that transcranial direct current stimulation (tDCS) is effective for some clusters of symptoms, the clinical benefits for negative symptoms are unclear.OBJECTIVE To determine the efficacy and safety of tDCS vs sham as an add-on treatment for patients with schizophrenia and predominant negative symptoms. DESIGN, SETTING, AND PARTICIPANTS The double-blind Schizophrenia Treatment With Electric Transcranial Stimulation (STARTS) randomized clinical trial was conducted from September 2014 to March 2018 in 2 outpatient clinics in the state of São Paulo, Brazil. Patients with schizophrenia with stable negative and positive symptoms and a minimum score of 20 points in the negative symptoms subscale of the Positive and Negative Syndrome Scale (PANSS) were included. INTERVENTIONS Ten sessions of tDCS performed twice a day for 5 days or a sham procedure. The anode and the cathode were positioned over the left prefrontal cortex and the left temporoparietal junction, respectively.
MAIN OUTCOMES AND MEASURESChange in the PANSS negative symptoms subscale score at week 6 was the primary outcome. Patients were followed-up for an additional 6 weeks.
RESULTSOf the 100 included patients, 20 (20.0%) were female, and the mean (SD) age was 35.3 (9.3) years. A total of 95 patients (95.0%) finished the trial. In the intention-to-treat analysis, patients receiving active tDCS showed a significantly greater improvement in PANSS score compared with those receiving the sham procedure (difference, 2.65; 95% CI, 1.51-3.79; number needed to treat, 3.18; 95% CI, 2.12-6.99; P < .001). Response rates for negative symptoms (20% improvement or greater) were also higher in the active group (20 of 50 [40%]) vs the sham group (2 of 50 [4%]) (P < .001). These effects persisted at follow-up. Transcranial direct current stimulation was well tolerated, and adverse effects did not differ between groups, except for burning sensation over the scalp in the active group (43.8%) vs the sham group (14.3%) (P = .003).CONCLUSIONS AND RELEVANCE Transcranial direct current stimulation was effective and safe in ameliorating negative symptoms in patients with schizophrenia.
Introduction Schizophrenia is a severe mental disorder. While some antipsychotic medications have demonstrated efficacy in treating positive symptoms, there is no widely recognized treatment for negative symptoms, which can cause significant distress and impairment for patients with schizophrenia. Here we describe the rationale and design of the STARTS study (Schizophrenia TreAtment with electRic Transcranial Stimulation), a clinical trial aimed to test the efficacy of a non-pharmacological treatment known as transcranial direct current stimulation (tDCS) for treating the negative symptoms of schizophrenia Methods The STARTS study is designed as a randomized, sham-controlled, double-blinded trial evaluating tDCS for the treatment of the negative symptoms of schizophrenia. One-hundred patients will be enrolled and submitted to 10 tDCS sessions over the left dorsolateral prefrontal cortex (anodal stimulation) and left temporoparietal junction (cathodal stimulation) over 5 consecutive days. Participants will be assessed using clinical and neuropsychological tests before and after the intervention. The primary outcome is change in the Positive and Negative Syndrome Scale (PANSS) negative subscale score over time and across groups. Biological markers, including blood neurotrophins and interleukins, genetic polymorphisms, and motor cortical excitability, will also be assessed. Results The clinical results will provide insights about tDCS as a treatment for the negative symptoms of schizophrenia, and the biomarker investigation will contribute towards an improved understanding of the tDCS mechanisms of action. Conclusion Our results could introduce a novel therapeutic technique for the negative symptoms of schizophrenia. Clinical trial registration: ClinicalTrials.gov, NCT02535676 .
A Abstract -An ultra low cost bias unit operating between 300KHz and 3GHz is simulated and developed using commercial Printed Circuit Board technology (PCB). All Scattering [S] parameters describing transmission loss, reflection and isolation between RF and DC ports are presented. A set of models is realized and characterized presenting excellent results.
Modo de acesso: World Wide Web Inclui bibliografia 1. Lean 2. Produção. 3. Processos I. Título
CDD-658O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos seus respectivos autores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.