SUMMARY The tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to decrease tumor growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling pathway that suppresses mammary epithelial tumors.
When placed between an enhancer and promoter, certain DNA sequence elements inhibit enhancer-stimulated gene expression. The best characterized of these enhancer-blocking insulators, gypsy in Drosophila and the CTCF-binding element in vertebrates and flies, stabilize contacts between distant genomic regulatory sites leading to the formation of loop domains. Current results show that CTCF mediates long-range contacts in the mouse beta-globin locus and at the Igf2/H19-imprinted locus. Recently described active chromatin hubs and transcription factories also involve long-range interactions; it is likely that CTCF interferes with their formation when acting as an insulator. The properties of CTCF, and its newly described genomic distribution, suggest that it may play an important role in large-scale nuclear architecture, perhaps mediated by the co-factors with which it interacts in vivo.
Phosphatase and tensin homolog deleted on chromosome ten (Pten) in stromal fibroblasts suppresses epithelial mammary tumors, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2, are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumor angiogenesis and tumor cell invasion. Expression of the Pten-miR-320-Ets2 regulated secretome distinguished human normal breast stroma from tumor stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumor suppressor axis that acts in stromal fibroblasts to reprogram the tumor microenvironment and curtail tumor progression.
The mechanisms by which kinesin-related proteins interact with other proteins to carry out specific cellular processes is poorly understood. The kinesin-related protein, Kar3p, has been implicated in many microtubule functions in yeast. Some of these functions require interaction with the Cik1 protein (Page, B.D., L.L. Satterwhite, M.D. Rose, and M. Snyder. 1994. J. Cell Biol. 124:507–519). We have identified a Saccharomyces cerevisiae gene, named VIK1, encoding a protein with sequence and structural similarity to Cik1p. The Vik1 protein is detected in vegetatively growing cells but not in mating pheromone-treated cells. Vik1p physically associates with Kar3p in a complex separate from that of the Kar3p-Cik1p complex. Vik1p localizes to the spindle-pole body region in a Kar3p-dependent manner. Reciprocally, concentration of Kar3p at the spindle poles during vegetative growth requires the presence of Vik1p, but not Cik1p. Phenotypic analysis suggests that Cik1p and Vik1p are involved in different Kar3p functions. Disruption of VIK1 causes increased resistance to the microtubule depolymerizing drug benomyl and partially suppresses growth defects of cik1Δ mutants. The vik1Δ and kar3Δ mutations, but not cik1Δ, partially suppresses the temperature-sensitive growth defect of strains lacking the function of two other yeast kinesin-related proteins, Cin8p and Kip1p. Our results indicate that Kar3p forms functionally distinct complexes with Cik1p and Vik1p to participate in different microtubule-mediated events within the same cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.