Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future.
Barber J. S., and Cobb, J. S. 2007. Injury in trapped Dungeness crabs (Cancer magister). – ICES Journal of Marine Science, 64: 464–472. Although traps are the most effective fishing equipment used to capture crabs they can also result in indirect damage to target species. We examined the effect of trap-soak time, crab density, and the legal to sublegal size ratio on injury rates to male Dungeness crabs, Cancer magister. Our field results show that injuries increase significantly with increased trap-soak time, and as a consequence of different size ratios (crabs in traps with a greater ratio of sublegal crabs had more injuries). The injury rate was independent of density. In a laboratory experiment, injured crabs were as capable as intact crabs of obtaining, defending, and consuming food. However, studies on other crab species indicate that injury reduces growth, delays reproduction, decreases mating success, and increases mortality. If the costs of injury are similar for Dungeness crabs, this could diminish the rate of recruitment into the fishery.
Long‐term datasets can be particularly useful for parsing out factors influencing populations, yet few studies have utilized continuous datasets to quantify population dynamics in bivalve molluscs. We used dynamic factor analysis on a clam biomass dataset spanning 28 yr and five distinct regions in the southern Salish Sea to determine (1) if native intertidal clam populations exhibit synchrony and (2) what environmental covariates may be correlated with these population trends. Once covariates were accounted for, the model with the most data support included three predominant trends to describe multidecadal change in clam biomass. Intraspecific synchrony was highest among Saxidomus gigantea and Leukoma staminea populations, with no clear evidence of covariance in Clinocardium nuttallii. Specifically, we quantified a pronounced decadal decline in L. staminea and an increase in S. gigantea biomass on most beaches. No beaches showed synchrony in trends across all three species, indicating that species‐specific trends (regardless of location) were more common than beach‐specific trends (regardless of species). Seven environmental covariates were evaluated in their capacity to explain variability in annual mean biomass. Of these, the North Pacific Gyre Oscillation lagged 4 yr prior to the observation year was most supported by the data in the best fitting model, implying that 4 yr old clam biomass is partially determined by oceanographic processes affecting larval clams. Although results suggest large‐scale density‐independent factors play a role in venerid clam population dynamics, it is also likely local factors account for variability not explained by our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.