Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, antiseptic, angiogenic, and moisturizing properties, a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles is developed. To achieve the smart release of VEGF, t-ZnO is modified by chemical treatment and activated through ultraviolet/ visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, are adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF-decorated t-ZnO-laden hydrogel patches show low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests show promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.
Statin derivatives traditionally have been used for the treatment of hyperlipidemia, but recent studies have shown their ability to regulate bone metabolism and promote bone growth. In this study, simvastatin (Sim), a new therapeutic candidate for bone regeneration, was combined with graphene oxide (GO), which has recently attracted much interest as a drug delivery method, to produce a compound substance effective for bone regeneration. To create a stable and homogenous complex with Sim, GO was modified with polyethylenimine, and the effect of modification was analyzed using Fourier transform infrared spectroscopy, zeta potential, and cytotoxicity testing. More specifically, the osteogenic differentiation potential expected by the combination of the two effective materials for osteogenic differentiation, GO and Sim, was evaluated in mesenchymal stem cells. Compared with control groups with GO and Sim used separately, the GO/Sim complex showed excellent osteogenic differentiation properties, with especially enhanced effects in the complex containing < 1 μM Sim.
In article number 2007555, Leonard Siebert, Eunjung Lee, Su Ryon Shin, and co‐workers develop a 3D printed smart wound scaffold encapsulating growth factors decorated with light‐sensitive and antibacterial tetrapodal zinc oxide (t‐ZnO) microparticles for the treatment of chronic wounds. The multifunctional pro perties of the smart scaffold combined with light‐triggered angiogenic factor release, antibacterial properties, and tissue compatibility enable fast wound recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.