The directed self-assembly (DSA) of block copolymers (BCPs) has been suggested as a promising nanofabrication solution. However, further improvements of both the pattern quality and manufacturability remain as critical challenges. Although the use of BCPs with a high Flory-Huggins interaction parameter ( χ ) has been suggested as a potential solution, this practical self-assembly route has yet to be developed due to their extremely slow selfassembly kinetics. In this study, it is reported that warm solvent annealing (WSA) in a controlled environment can markedly improve both the selfassembly kinetics and pattern quality. A means of avoiding the undesirable trade-off between the quality and formation throughput of the self-assembled patterns, which is a dilemma which arises when using the conventional solvent vapor treatment, is suggested. As a demonstration, the formation of well-defi ned 13-nm-wide self-assembled patterns (3σ line edge roughness of ≈2.50 nm) in treatment times of 0.5 min (for 360-nm-wide templates) is shown. Self-consistent fi eld theory (SCFT) simulation results are provided to elucidate the mechanism of the pattern quality improvement realized by WSA.
Directed self-assembly (DSA) of block copolymers (BCPs) with a high Flory−Huggins interaction parameter (χ) provides advantages of pattern size reduction below 10 nm and improved pattern quality. Despite theoretical predictions, however, the questions of whether BCPs with a much higher χ than conventional high-χ BCPs can further improve the line edge roughness (LER) and how to overcome their extremely slow self-assembly kinetics remain unanswered. Here, we report the synthesis and assembly of poly-(4vinylpyridine-b-dimethylsiloxane) BCP with an extremely high χ-parameter (estimated to be approximately 7 times higher compared to that of poly(styrene-b-dimethylsiloxane) − a conventional high-χ BCP) and achieve a markedly low 3σ line edge roughness of 0.98 nm, corresponding to 6% of its line width. Moreover, we demonstrate the successful application of an ethanolbased 60 °C warm solvent annealing treatment to address the extremely slow assembly kinetics of the extremely high-χ BCP, considerably reducing the self-assembly time from several hours to a few minutes. This study suggests that the use of BCPs with an even larger χ could be beneficial for further improvement of self-assembled BCP pattern quality.
In situ nanolithography is realized based on warm spin-casting of block copolymer solutions. This advancement is based on Si-containing block copolymers with an appropriate thermodynamic driving force for spontaneous phase-separation combined with the thermal assistance provided by slight temperature elevations during the spin-casting. Sub-10 nm half-pitch nanoscale patterns are produced within 30 s without a separate annealing process.
For low-cost and facile fabrication of innovative nanoscale devices with outstanding functionality and performance, it is critical to develop more practical patterning solutions that are applicable to a wide range of materials and feature sizes while minimizing detrimental effects by processing conditions. In this study, we report that area-selective sub-10 nm pattern formation can be realized by temperature-controlled spin-casting of block copolymers (BCPs) combined with submicron-scale-patterned chemical surfaces. Compared to conventional room-temperature spin-casting, the low temperature ( e.g., -5 °C) casting of the BCP solution on the patterned self-assembled monolayer achieved substantially improved area selectivity and uniformity, which can be explained by optimized solvent evaporation kinetics during the last stage of film formation. Moreover, the application of cold spin-casting can also provide high-yield in situ patterning of light-emitting CdSe/ZnS quantum dot thin films, indicating that this temperature-optimized spin-casting strategy would be highly effective for tailored patterning of diverse organic and hybrid materials in solution phase.
Polarized ultraviolet (UV) emitters are essential for various applications, such as photoalignment devices for liquid crystals, high-resolution imaging devices, highly sensitive sensors, and steppers. To increase the high polarization ratio (PR) of a UV emitter, the grating period should be decreased than that of the visible emitter. However, the fabrication of the short period grating directly on UV emitters is still limited. In this study, we demonstrate that 200, 100, and 50 nm period aluminum (Al)-based wire-grid polarizers (WGPs) can be fabricated directly on UV emitters by a solvent-assisted nanotransfer process. The UV emitter with a grating period of 100 nm shows a PR of 84%, and an electroluminescence efficiency that is 22.5% and 48% higher than those of UV emitters with 50 nm and 200 nm period WGPs, respectively, due to the increased photon extraction efficiency (PEE). The higher PEE is attributed to the optical cavity property of the Al metal reflector with low light loss and the surface plasmon effect of the Al grating layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.