In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.
This paper presents the development of an easy-to-handle and disposable clinical diagnostic lab-on-a-chip using fully integrated plastic microfluidic components, which has the sampling/identifying capability to make fast and reliable measurements of metabolic parameters from human whole blood. A smart and functional lab-on-a-chip cartridge, which incorporates a full on-chip auto-calibration function for in the field applications, has been developed, and then fully characterized using a portable analyzer (3 (1/4)''x 5''x 1'') with multi-analyte detection capability. In addition, several new approaches in realizing smart and functional lab-on-a-chips on polymer have been adopted, which include the pinch valve for automatic fluidic sealing, a by-pass channel as the sampling indicator, and a robust connector design for long analyzer lifetimes. Metabolic parameters such as glucose, lactate, and partial oxygen from human whole blood have been successfully measured using the functional polymer lab-on-a-chips and the portable analyzer developed in this work.
Cardiovascular diseases (CVDs) have been the leading threat to human life. An effective way for sensitive and accurate CVD diagnosis is to measure the biochemical markers released from the damaged myocardial cells in the bloodstream. Here, a multi-analyte, fluorophore mediated, fiber-optic immuno-biosensing system is being developed to simultaneously and rapidly quantify four clinically important cardiac markers, myoglobin, C-reactive protein, cardiac troponin I, and B-type natriuretic peptide. To quantify these markers at a pico-molar level, novel nanoparticle reagents enhancing fluorescence were used and signal enhancement was obtained as high as approximately 230%. Micro-electro-mechanical system (MEMS) was integrated to this system to ensure a reliable and fully-automated sensing performance. A point-of-care, automatic microfluidic sensing system for four cardiac marker quantification was developed with the properties of 3 cm sensor size, 300 microL sample volume, 9-minute assay time, and an average signal-to-noise ratio of 35.
A new sample-to-answer polymer lab-on-a-chip, which can perform immunoassay with minimum user intervention through on-chip reservoirs for reagents and single-channel assay system, has been designed, developed and successfully characterized as a point-of-care testing (POCT) cartridge for the detection of thyroid stimulating hormone (TSH). Test results were obtained within 30 minutes after a sample was dropped into the POCT cartridge. The analyzed results of TSH showed a linear range of up to 55 μIU mL(-1) with the limit of detection (LOD) of 1.9 μIU mL(-1) at the signal-to-noise ratio (SNR) of 3. The reagents stored in the on-chip reservoirs maintained more than 97% of their initial volume for 120 days of storage time while the detection antibody retained its activity above 98% for 120 days. The sample-to-answer polymer lab-on-a-chip developed in this work using the mass-producible and low-cost polymer is well suited for the point-of-care testing of rapid in vitro diagnostics (IVD) of TSH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.