The most frequently used climate classification map is that of Wladimir Köppen, presented in its latest version 1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a former release of the Köppen-Geiger map. While the climate classification concept has been widely applied to a broad range of topics in climate and climate change research as well as in physical geography, hydrology, agriculture, biology and educational aspects, a well-documented update of the world climate classification map is still missing. Based on recent data sets from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation Climatology Centre (GPCC) at the German Weather Service, we present here a new digital Köppen-Geiger world map on climate classification, valid for the second half of the 20 th century. Zusammenfassung Die am häufigsten verwendete Klimaklassifikationskarte ist jene von Wladimir Köppen, die in der letzten Auflage von Rudolf Geiger aus dem Jahr 1961 vorliegt. Seither bildeten viele Klimabücher und Fachartikel diese oder eine frühere Ausgabe der Köppen-Geiger Karte ab. Obwohl das Schema der Klimaklassifikation in vielen Forschungsgebieten wie Klima und Klimaänderung aber auch physikalische Geographie, Hydrologie, Landwirtschaftsforschung, Biologie und Ausbildung zum Einsatz kommt, fehlt bis heute eine gut dokumentierte Aktualisierung der Köppen-Geiger Klimakarte. Basierend auf neuesten Datensätzen des Climatic Research Unit (CRU) der Universität von East Anglia und des Weltzentrums für Niederschlagsklimatologie (WZN) am Deutschen Wetterdienst präsentieren wir hier eine neue digitale Köppen-Geiger Weltkarte für die zweite Hälfte des 20. Jahrhunderts.
[1] The surface net radiation (surface radiation balance) is the key driver behind the global hydrological cycle. Here we present a first-order trend estimate for the 15-year period 1986 -2000, which suggests that surface net radiation over land has rapidly increased by about 2 Wm À2 per decade, after several decades with no evidence for an increase. This recent increase is caused by increases in both downward solar radiation (due to a more transparent atmosphere) and downward thermal radiation (due to enhanced concentrations of atmospheric greenhouse-gases). The positive trend in surface net radiation is consistent with the observed increase in land precipitation (3.5 mmy À1 per decade between 1986 and 2000) and the associated intensification of the land-based hydrological cycle. The concurrent changes in surface net radiation and hydrological cycle were particularly pronounced in the recovery phase following the Mount Pinatubo volcanic eruption, but remain evident even when discarding the Pinatubo-affected years.
[1] Observational evidence supports the recent analytical prediction that tornado intensities are exponentially distributed over peak wind speed squared (v 2 ), or equivalently, Rayleigh-distributed over v. For large USA data samples, exponential tails are found in the tornado intensity distributions over v 2 from about F2 intensity on. Similar results follow for smaller worldwide data samples. For the 1990s data from the USA and Oklahoma, deviations from the Rayleigh distribution for weak tornadoes can be explained by the emergence of a separate, likely nonmesocyclonic tornado mode. These bimodal datasets can be modeled by superposition of two Rayleigh distributions. The change in modal dominance occurs at about the F2 threshold (v % 50 m s À1 ). In France, likely mainly the mesocyclonic tornado mode has been recorded, while in the UK, only a non-mesocyclonic mode seems to be present. Citation: Dotzek, N., M. V. Kurgansky, J. Grieser, B. Feuerstein, and P. Névir (2005), Observational evidence for exponential tornado intensity distributions over specific kinetic energy, Geophys. Res. Lett., 32, L24813,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.