In monkeys, dogs and swine (six each) we tested the reduction of the isoflurane MAC (minimal alveolar concentration) produced by 2 mg.kg-1 morphine intravenously (i.v.) and the concurrent effect on PCO2 with spontaneous ventilation. MAC fell to a minimum of 55% of control at 53 min in monkeys, 50% at 38 min in dogs and 13% at 33 min in swine. PaCO2 rose at constant MAC with morphine to 55-60 mmHg, but did not fall over the next several hours despite the decline of plasma morphine concentration, and the resulting needed rise in isoflurane concentration to keep the anaesthesia depth at 1 MAC. After isoflurane concentration had returned to pre-morphine control levels, naloxone immediately reduced PaCO2 to or below control level. Morphine pharmacokinetics in the three species studied conformed to a two-compartment model.
Results of recent investigations in humans and dogs indicate that gravity-independent factors may be important in determining the distribution of pulmonary blood flow. To further evaluate the role of gravity-independent factors, pulmonary blood flow distribution was examined using 15-microns radionuclide-labeled microspheres in five prone ponies over 5 h of pentobarbital sodium anesthesia. The ponies were killed, and the lungs were excised and dried by air inflation (pressure 45 cmH2O). The dry lungs were cut into transverse slices 1-2 cm thick along the dorsal-ventral axis, parallel to gravity. Radioactivity of pieces cut from alternate slices was measured with a gamma well counter. The main finding was a preferential distribution of pulmonary blood flow to dorsal-caudal regions and higher flow in the center of each lung slice when compared with the slice periphery. Flow was lowest in cranial and ventral areas. Differences of +/- 2 SD were observed between core and peripheral blood flow. No medial-lateral differences were found. Pulmonary blood flow distribution did not change over 5 h of anesthesia, and the basic flow pattern was not different in the left vs. right lung. These results suggest that in the intact prone mechanically ventilated pony (inspired O2 fraction greater than or equal to 0.95) factors other than gravity are primary determinants of pulmonary blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.