Microelectronic manufacturing progresses not only towards further miniaturisation, but also application fields tend to become more and more diverse. Recently there has been an increasing demand for electronic devices and circuits that function in harsh environments such as high temperatures. Under these conditions, reliability aspects are highly critical and testing remains a great challenge. A versatile CMOS process based on 200 mm thin film Silicon-on-Insulator (SOI) wafers is in production at Fraunhofer IMS. It features three layers of tungsten metallisation for optimum electromigration reliability, voltage independent capacitors, high resistance resistors and single-poly-EEPROM cells. Non-volatile memories such as EEPROMs are a key technology that enables flexible data storage, for example of calibration and measurement information. The reliability of these devices is especially crucial in high temperature applications since charge loss is drastically increased in this case. The behaviour of single-poly-EEPROM cells, produced in the process described before, was evaluated up to 450 °C. Data retention tests at temperatures ranging from 160 °C to 450 °C and write/erase cycling tests up to 400 °C were performed. The dependence of write/erase cycling on both temperature and tunnel oxide thickness was studied. These data provide an important foundation to extend the application of high temperature electronics to its maximum limits. The results show that EEPROM cells can be used for special applications even at temperatures higher than 250 °C.
Silicon-on-Insulator (SOI) is the most commonly used technology for integrated circuits capable of operating at high temperature. Due to the efficient reduction of leakage current paths much higher operation temperatures are achievable with SOI than with bulk technologies. Published work on high temperature CMOS circuits typically refers to technologies with a minimum feature size of 0.8 to 1.0 micron [1][2][3] even though for complex digital circuits this results in large die size. Technologies with smaller feature size are available but typically not suitable for reliable high temperature operation due to high leakage currents, decreasing threshold voltages over temperature or reliability issues with the standard aluminum metallization. Fraunhofer IMS has developed a high temperature 0.35 micron thin film SOI technology. The mixed signal technology provides numerous devices, e.g. specific transistors for analog and digital circuit design, diodes, resistors and voltage independent capacitors. Also non-volatile memory cells (EEPROM) are available. In addition the technology is equipped with a tungsten metallization for highly reliable operation even at high temperatures. An overview on the new technology including characterization results of devices and test circuits is given in this paper.
Standard Bulk-CMOS-technology targets use-temperatures of not more than 175 °C. Silicon-on-Insulator-technologies are commonly used up to 250 °C. In this work we evaluate the limit for electronic circuit function realized in thin film SOI-technologies for even higher temperatures. At Fraunhofer IMS a versatile 1.0 μm SOI-CMOS process based on 200 mm wafers is available. It features three layers of tungsten metalization with excellent reliability concerning electromigration, voltage independent capacitors, various resistors, and single-poly-EEPROMs. We present a study of the temperature dependence of MOSFETs and basic circuits produced in this process. The electrical characteristics of NMOSFET- and PMOSFET-transistors were studied up to 450 °C. In a second step we investigated the functionality of ring oscillators, representing digital circuits, and bandgap references as examples of simple analog components. The frequency and the current consumption of ring oscillators and the output voltage of bandgap references were also characterized up to 450 °C. We found that the ring oscillator still functions at this high temperature with a frequency of about one third of the value at room temperature. The output voltage of the bandgap reference is in the specified range up to 250 °C. The deviations above this temperature are analyzed and measures to improve the circuit are discussed. The acquired data provide an important foundation to extend the application of CMOS-technology to its real maximum temperature limits.
AbstractÀIt is difficult to use standard bulk-CMOS-technology at temperatures higher than 1758C due to high pn-leakage currents. Silicon-on-insulator-technologies (SOI), on the other hand, are usable up to 2508C and even higher, because leakage currents can be reduced by two to three orders of magnitude. Nevertheless, performance and reliability of SOI devices are strongly affected at these high temperatures. One of the main critical factors is the gate oxide quality and its reliability. In this paper, we present a study of gate oxide capacitor time-dependent dielectric breakdown (TDDB) measurements at temperatures up to 3508C. The experiments were carried out on gate oxide capacitor structures realized in the Fraunhofer 1.0 mm SOI-CMOS process. The gate oxide thickness is 40 nm. Using the data of the TDDB measurements, the behavior of field and temperature acceleration parameters at temperatures up to 3508C was evaluated. For a more detailed investigation, the evolution of the current in time was also studied. An analysis of the oxide breakdown conditions, in particular the field and temperature dependence of the charge to breakdown and the current just before breakdown, completes the study. The presented data provide important information about accelerated oxide reliability testing beyond 2508C, and make it possible to quickly evaluate the reliability of high temperature CMOS technologies at operation temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.