The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.
Developments over the last 15 years in the areas of materials and devices have finally delivered competitive Ill-V MOSFETs with high mobility channels. This paper briefly reviews the above developments, discusses properties of the GdGaO/ Ga2O3 MOS systems, presents GaAs MOSFET DC and RF data, and concludes with an outlook for high indium content channel MOSFETs. GaAs based MOSFETs are potentially suitable for RF power amplification, switching, and front-end integration in mobile and wireless applications while MOSFETs with high indium content channels are of interest for future CMOS applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.