An essential work in natural language processing is the Multi-Label Text Classification (MLTC). The purpose of the MLTC is to assign multiple labels to each document. Traditional text classification methods, such as machine learning usually involve data scattering and failure to discover relationships between data. With the development of deep learning algorithms, many authors have used deep learning in MLTC. In this paper, a novel model called Spotted Hyena Optimizer (SHO)-Long Short-Term Memory (SHO-LSTM) for MLTC based on LSTM network and SHO algorithm is proposed. In the LSTM network, the Skip-gram method is used to embed words into the vector space. The new model uses the SHO algorithm to optimize the initial weight of the LSTM network. Adjusting the weight matrix in LSTM is a major challenge. If the weight of the neurons to be accurate, then the accuracy of the output will be higher. The SHO algorithm is a population-based meta-heuristic algorithm that works based on the mass hunting behavior of spotted hyenas. In this algorithm, each solution of the problem is coded as a hyena. Then the hyenas are approached to the optimal answer by following the hyena of the leader. Four datasets are used (RCV1-v2, EUR-Lex, Reuters-21578, and Bookmarks) to evaluate the proposed model. The assessments demonstrate that the proposed model has a higher accuracy rate than LSTM, Genetic Algorithm-LSTM (GA-LSTM), Particle Swarm Optimization-LSTM (PSO-LSTM), Artificial Bee Colony-LSTM (ABC-LSTM), Harmony Algorithm Search-LSTM (HAS-LSTM), and Differential Evolution-LSTM (DE-LSTM). The improvement of SHO-LSTM model accuracy for four datasets compared to LSTM is 7.52%, 7.12%, 1.92%, and 4.90%, respectively.
SummaryNowadays, software‐defined networking (SDN) is regarded as the best solution for the centralized handling and monitoring of large networks. However, it should be noted that SDN architecture suffers from the same security issues, which are the case with common networks. As a case in point, one of the shortcomings of SDNs is related to its high vulnerability to distributed denial of service (DDoS) attacks and other similar ones. Indeed, anomaly detection systems have been considered to deal with these attacks. The challenges are related to designing these systems including gathering data, extracting effective features, and selecting the best model for anomaly detection. In this paper, a novel combined approach is proposed; this method uses NetFlow protocol for gathering information and generating dataset, information gain ratio (IGR), in order to select the effective and relevant features and ensemble learning scheme (Stacking) for developing a structure with desirable performance and efficiency for detecting anomaly in SDN environment. The results obtained from the experiments revealed that the proposed method performs better than other methods in terms of enhancing accuracy (AC) and detection rate (DR) and reducing classification error (CE) and false alarm rate (FAR). The AC, DR, CE, and FAR of the proposed model were measured as 99.92%, 99.83%, 0.08%, and 0.03%, respectively. Furthermore, the proposed method prevents the occurrence of excessive overload on the controller and OpenFlow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.