ABSTRAKKegiatan ekstrakurikuler merupakan suatu bagian internal dari proses belajar yang menekankan pada kebutuhan siswa. Kegiatan ekstrakurikuler dapat menjadi sarana untuk menyalurkan bakat dan mendorong perkembangan potensi pada anak didik agar mencapai taraf maksimum. Banyaknya kegiatan ekstrakurikuler yang ada pada sekolah tersebut membuat siswa sulit untuk menentukan kegiatan ekstrakurikuler apa yang harus diikuti, sehingga tidak jarang siswa tersebut salah memilih ekstrakurikuler dan tidak sesuai dengan potensi yang mereka miliki. Salah satu solusi untuk membantu para siswa dalam memilih kegiatan ekstrakurikuler adalah dengan menggunakan sistem pendukung keputusan pemilihan kegiatan ekstrakurikuler dengan Metode Simple Multy Atribute Rating Technique (SMART). Metode SMART yang digunakan pada pembuatan sistem pendukung keputusan kegiatan ekstrakurikuler ini telah mampu menjawab masalah yang ada dengan adanya respon dari responden sebesar 83,415% sangat setuju bahwa sistem ini mampu membantu siswa dalam memilih kegiatan ekstrakurikuler.
The pandemic that has hit the world has forced us to do learning indirectly or is often referred to as online (Daring). Online teaching and learning process requires some adjustments both on the teacher's side and the student's side. One of the adjustments is the need to seek technology and adaptation using technology. The currently widely used technology is online meeting services, such as the Zoom Meeting application, Google Meet, Video Calling via the Massager application, or other similar applications. To adapt to the technology, teachers at Madrasah Ibtidaiyah Muhammadiyah 01 Pekanbaru strongly desire to deepen ownership of the Zoom application as one of the media used for online learning. This training aims to provide an understanding and hands-on practice of using Zoom Meeting technology to increase learning effectiveness.
Produk sampah setiap hari semakin meningkat seiring dengan bertambahnya jumlah produk dan pola konsumsi masyarakat. Banyak masyarakat yang tidak memisahkan sampah organik dan anorganik saat pembuangan. Salah satu penyebabnya adalah masyarakat tidak dapat membedakan sampah organik dan anorganik. Berdasarkan permasalahan tersebut maka dirancang sebuah alat berbasis Internet of Things yang menggunakan NodeMCU ESP8266 sebagai mikrokontroler-nya. Untuk membedakan sampah organik dan anorganik digunakan tiga sensor sekaligus, yakni sensor proximity infrared, Kapasitif dan Induktif. Data yang dibaca oleh alat ini kemudian menyalakan LED sesuai jenis tempat sampah. Pada penelitian ini, juga dirancang tempat sampah yang menggunakan sensor ultrasonic untuk mendeteksi ketinggian sampah. Informasi ketinggian ini kemudian dikirimkan ke aplikasi monitoring berbasis website menggunakan jaringan wifi dan protokol MQTT. Aplikasi ini digunakan oleh petugas kebersihan untuk memantau tempat sampah mana saja yang sudah harus diangkut. Dari hasil pengujian, ketiga sensor proximity yang digunakan berhasil membedakan sampah organik dan anorganik. Jarak yang direkomendasikan agar sensor bekerja optimal adalah 3 mm. Data yang didapatkan oleh alat pemilah juga berhasil dikirimkan ke aplikasi monitoring ketinggian sampah. Petugas mendapatkan notifikasi pada website, tempat sampah mana saja yang sudah harus diangkut.
The demands of the learning process during the current pandemic force teachers and students to carry out digital transformation in the learning process. Especially in the new normal where the learning process is done online. Thus, the learning media made by the teacher must also be adapted to online media so that the learning process can be maximized and increase the activeness of students in learning while online. This study aims to create an online learning media by applying the concept of gamification. The method used in this research is R&D (Research and Development) using analysis, design, and development models. Stages of analysis are carried out to determine the needs of students when learning online. Then in the design stage, the selection of media formats and media design is carried out, and finally at the development stage, the advanced process of making games with programming languages is carried out as a learning medium. The use of gamification learning media is very practical, which can be accessed by students through their devices at home via the internet network. In the learning process, this game can be used to assist teachers in achieving learning objectives so that they can increase learning activity and the value of students in one basic competency.
One of the uses of medical data from diabetes patients is to produce models that can be used by medical personnel to predict and identify diabetes in patients. Various techniques are used to be able to provide a diabetes model as early as possible based on the symptoms experienced by diabetic patients, including using machine learning. The machine learning technique used to predict diabetes in this study is extreme gradient boosting (XGBoost). XGBoost is an advanced implementation of gradient boosting along with multiple regularization factors to accurately predict target variables by combining simpler and weaker model set estimations. Errors made by the previous model are tried to be corrected by the next model by adding some weight to the model. The diabetes prediction model using XGBoost is shown in the form of a tree, with the accuracy of the model produced in this study of 98.71%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.