Effective motion planning and localization are necessary tasks for swarm robotic systems to maintain a desired formation while maneuvering. Herein, we present an inchworm-inspired strategy that addresses both these tasks concurrently using anchor robots. The proposed strategy is novel as, by dynamically and optimally selecting the anchor robots, it allows the swarm to maximize its localization performance while also considering secondary objectives, such as the swarm’s speed. A complementary novel method for swarm localization, that fuses inter-robot proximity measurements and motion commands, is also presented. Numerous simulated and physical experiments are included to illustrate our contributions.
For older adults, regular exercises can provide both physical and mental benefits, increase their independence, and reduce the risks of diseases associated with aging. However, only a small portion of older adults regularly engage in physical activity. Therefore, it is important to promote exercise among older adults to help maintain overall health. In this paper, we present the first exploratory long-term human–robot interaction (HRI) study conducted at a local long-term care facility to investigate the benefits of one-on-one and group exercise interactions with an autonomous socially assistive robot and older adults. To provide targeted facilitation, our robot utilizes a unique emotion model that can adapt its assistive behaviors to users’ affect and track their progress towards exercise goals through repeated sessions using the Goal Attainment Scale (GAS), while also monitoring heart rate to prevent overexertion. Results of the study show that users had positive valence and high engagement towards the robot and were able to maintain their exercise performance throughout the study. Questionnaire results showed high robot acceptance for both types of interactions. However, users in the one-on-one sessions perceived the robot as more sociable and intelligent, and had more positive perception of the robot’s appearance and movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.