This paper presents the results of determination of hazardous metal (Cd, Cu, Cr, Hg, Mn, Ni, Pb, Zn) and metalloid (As, Sb) levels in toys available in the Polish market. Two independent sample preparation methods were used to determine the concentration and content of the metals and metalloids. The first one is defined by the guidelines of the EN-71 standard and undertook extraction in 0.07 mol/L HCl. This method was used to conduct speciation analysis of Cr(III) and Cr(VI), as well as for the determination of selected metals and metalloids. The second method conducted mineralization in a HNO3 and H2O2 mixture using microwave energy to determine the content of metals and metalloids. Determination of chromium forms was made using the high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method, while those of metals and metalloids were made using the ICP-MS technique. Additionally, in order to determine total content of chromium in toys, an energy dispersive X-ray fluorescence spectrometer (EDX) was used. The results of the analyses showed that Cr(VI) was not detected in the toys. In general, the content of heavy metals and metalloids in the studied samples was below the migration limit set by the norm EN-71.
Aluminum is very common in the natural environment and in everyday human life. We are living in the “aluminum age.” Its average daily intake should not exceed a few mg/day. Unfortunately, despite the growing number of alarming data about the toxicity of this element, human exposure to aluminum is constantly increasing. The toxicity and bioavailability of aluminum depends mainly on the form in which it occurs. The main variables conditioning the form are the concentration, the type, the molar ratio of aluminum to ligand, the pH value, and the temperature. This research presents a new method for speciation analysis of both inorganic and organic aluminum complexes in model solutions by LC–ICP–MS. Different solutions with variable pH values and different Al/ligand molar ratios (fluorides and several organic ligands, e.g., citrates and oxalates ions) were used. The chromatographic separation process was carried out based on isocratic and gradient elution, using a cation exchange analytical column. All determinations have been confirmed based on chemical equilibrium modeling programs. The new developed method was successfully applied for the first time in speciation analysis of real samples: white and red wine.
This paper presents a new method for the simultaneous speciation analysis of arsenic (As(III)-arsenite, As(V)-arsenate, DMA-dimethylarsinic acid, MMA-methylarsonic acid, and AsB-arsenobetaine) and selenium (Se(IV)-selenite, Se(VI)-selenate, Se-Methionine, and Se-Cystine), which was applied to a variety of seafood and onion samples. The determination of the forms of arsenic and selenium was undertaken using the High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC–ICP–MS) analytical technique. The separation of both organic and inorganic forms of arsenic and selenium was performed using two analytical columns: an anion exchange column, Dionex IonPac AS22, containing an alkanol quaternary ammonium ion, and a double bed cation–anion exchange guard column, Dionex Ion Pac CG5A, containing, as a first layer, fully sulfonated latex for cation exchange and a fully aminated layer for anion exchange as the second layer. The ammonium nitrate, at pH = 9.0, was used as a mobile phase. The method presented here allowed us to separate the As and Se species within 10 min with a suitable resolution. The applicability was presented with different sample matrix types: seafood and onion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.