The solar minimum of 2007–2010 was unusually deep and long lived. In the later stages of this period the electron fluxes in the radiation belts dropped to extremely low levels. The flux of relativistic electrons (>1 MeV) was significantly diminished and at times was below instrument thresholds both for spacecraft located in geostationary orbits and also those in low‐Earth orbit. This period has been described as a natural “Grand Experiment” allowing us to test our understanding of basic radiation belt physics and in particular the acceleration mechanisms which lead to enhancements in outer belt relativistic electron fluxes. Here we test the hypothesis that processes which initiate repetitive substorm onsets drive magnetospheric convection, which in turn triggers enhancement in whistler mode chorus that accelerates radiation belt electrons to relativistic energies. Conversely, individual substorms would not be associated with radiation belt acceleration. Contrasting observations from multiple satellites of energetic and relativistic electrons with substorm event lists, as well as chorus measurements, show that the data are consistent with the hypothesis. We show that repetitive substorms are associated with enhancements in the flux of energetic and relativistic electrons and enhanced whistler mode wave intensities. The enhancement in chorus wave power starts slightly before the repetitive substorm epoch onset. During the 2009/2010 period the only relativistic electron flux enhancements that occurred were preceded by repeated substorm onsets, consistent with enhanced magnetospheric convection as a trigger.
A technique for analyzing very low frequency (VLF) radiowave signals is investigated in order to achieve rapid, real-time detection of large solar flares, through the monitoring of changes in VLF radio signal propagation conditions. The reliability of the use of VLF phase and amplitude perturbations to determine the X-ray fluxes involved during 10 large solar flare events (>X1) is examined. Linear regression analysis of signals from the NPM transmitter in Hawaii, received at Arrival Heights, Scott Base, Antarctica, over the years 2011-2015 shows that VLF phase perturbations during large solar flares have a 1.5-3 times lower mean square error when modeling the long wavelength X-ray fluxes than the equivalent short wavelength fluxes. The use of VLF amplitude observations to determine long or short wavelength X-ray flux levels have a 4-10 times higher mean square error than when using VLF phase. Normalized linear regression analysis identifies VLF phase as the most important parameter in the regression, followed by solar zenith angle at the midpoint of the propagation path, then the initial solar X-ray flux level (from 5 min before the impact of the solar flare), with F10.7 cm flux from the day beforehand providing the least important contribution. Transmitter phase measurements are more difficult to undertake than amplitude. However, networks of VLF receivers already exist which include the high quality phase capability required for such a nowcasting product. Such narrowband VLF data can be a redundant source of flare monitoring if satellite data is not available.
The primary sources of energetic electron precipitation (EEP) which affect altitudes <100 km (>30 keV) are expected to be from the radiation belts and during substorms. EEP from the radiation belts should be restricted to locations between L = 1.5 and 8, while substorm‐produced EEP is expected to range from L = 4 to 9.5 during quiet geomagnetic conditions. Therefore, one would not expect any significant D region impact due to electron precipitation at geomagnetic latitudes beyond about L = 10. In this study we report on large unexpectedly high‐latitude D region ionization enhancements, detected by an incoherent scatter radar at L ≈ 16, which appear to be caused by electron precipitation from substorms. We go on to reexamine the latitudinal limits of substorm‐produced EEP using data from multiple low‐Earth orbiting spacecraft, and demonstrate that the precipitation stretches many hundreds of kilometers poleward of the previously suggested limits. We find that a typical substorm will produce significant EEP over the International Geomagnetic Reference Field L shell range L = 4.6 ± 0.2–14.5 ± 1.2, peaking at L = 6–7. However, there is significant variability from event to event; in contrast to the median case, the strongest 25% of substorms have significant EEP in the range spanning L = 4.1 ± 0.1–20.7 ± 2.2, while the weakest 25% of substorms have significant EEP in the range spanning L = 5.5 ± 0.1–10.1 ± 0.7. We also examine the occurrence probability of very large substorms, focusing on those events which appear to be able to disable geostationary satellites when they are located near midnight magnetic local time. On average, these large substorms occur approximately one to six times per year, a significant rate, given the potential impact on satellites.
Subionospheric radio wave data from an Antarctic-Arctic Radiation-Belt (Dynamic) Deposition VLF Atmospheric Research Konsortia (AARDDVARK) receiver located in Churchill, Canada, is analyzed to determine the characteristics of electron precipitation into the atmosphere over the range 3 < L < 7. The study advances previous work by combining signals from two U.S. transmitters from 20 July to 20 August 2010, allowing error estimates of derived electron precipitation fluxes to be calculated, including the application of time-varying electron energy spectral gradients. Electron precipitation observations from the NOAA POES satellites and a ground-based riometer provide intercomparison and context for the AARDDVARK measurements. AARDDVARK radiowave propagation data showed responses suggesting energetic electron precipitation from the outer radiation belt starting 27 July 2010 and lasting~20 days. The uncertainty in >30 keV precipitation flux determined by the AARDDVARK technique was found to be ±10%. Peak >30 keV precipitation fluxes of AARDDVARK-derived precipitation flux during the main and recovery phase of the largest geomagnetic storm, which started on 4 August 2010, were >10 5 el cm À2 s À1 sr À1. The largest fluxes observed by AARDDVARK occurred on the dayside and were delayed by several days from the start of the geomagnetic disturbance. During the main phase of the disturbances, nightside fluxes were dominant. Significant differences in flux estimates between POES, AARDDVARK, and the riometer were found after the main phase of the largest disturbance, with evidence provided to suggest that >700 keV electron precipitation was occurring. Currently the presence of such relativistic electron precipitation introduces some uncertainty in the analysis of AARDDVARK data, given the assumption of a power law electron precipitation spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.