Background:In quiescent human cells, UV induces histone H2AX phosphorylation by ATR in a nucleotide excision repair (NER)-dependent manner. Results: UV also activates ATM in response to NER-mediated DNA double-strand break (DSB).
Conclusion:The NER reaction in quiescent cells potentially generates multiple types of secondary DNA damage. Significance: This work highlights the importance of our understanding of the DNA damage response in quiescent cells.
Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.
In myocytes, local contractions occur spontaneously and propagate as traveling waves. We observed the waves in myocytes as local changes in fura-2 fluorescence and determined some characteristics of the wave. Myocytes were enzymatically isolated from rat left ventricles and incubated with 2 microM fura-2/AM for 60 min. Microscopic fluorescence images of myocytes were recorded with a high-sensitivity video camera. The images were digitally analyzed, frame by frame, and temporal changes in local fluorescence were displayed. With the excitation wavelength at 380 nm, the darker band propagates as the traveling wave. With the excitation wavelength at 340 nm, the wave appears brighter. With the isosbestic wavelength at 360 nm, the wave is not discernible. The waves are thus considered to be traveling waves of change in local cytoplasmic calcium ion concentration (calcium wave). Velocity, amplitude, and width of the calcium waves appeared to be fairly constant during their propagation. When two waves propagating in opposite directions collided, summation of the waves did not occur. After the collision both waves disappeared. These observations support the idea that the waves propagate by inducing calcium release from adjacent sarcoplasmic reticulum. Phenomena observed during the collision indicate that there is a refractory period after the calcium transient; spatially, a refractory zone exists in the wake of the wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.