Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4–7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during DD fusion and can undergo secondary DT reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall DT to DD neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions are also shown to provide an upper bound for volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., to appear in PRL] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PACS numbers:Introduction.-Magneto-inertial fusion (MIF) offers some key advantages over traditional inertial confinement fusion (ICF). In MIF, fuel magnetization relaxes the extreme pressure requirements characteristic of traditional ICF and enhances thermal insulation of the hot fuel from the colder pusher [1-10]. We consider paradigmatically the radial compression of a long, thin cylinder of fuel magnetized with a uniform, axial field prior to compression [11][12][13][14][15][16][17]. At stagnation, the compressed magnetic flux redirects charged burn products axially, increasing the effective fuel areal density from ρR to ρZ, where ρ is the fuel mass density, R is the fuel radius, Z is the fuel length, and A ≡ Z/R ≫ 1 is the aspect ratio.Sandia National Laboratories has fielded the first integrated experiments investigating Magnetized Liner I nertial F usion (MagLIF) [14][15][16][17], which involves direct compression of magnetized, preheated deuterium fuel by a solid metal (beryllium) liner, imploded on the 26 MA, 100 ns Z Pulsed Power Facility [18]. The imploding cylindrical liner compresses a pre-seeded axial magnetic field, B 0 (≈ 10 T in the first experiments), to high amplitude at stagnation, B, where perfect flux conservation would imply B = B 0 (R 0 /R) 2 , and R 0 = 2.325 mm is the initial fuel radius. However, detailed simulations suggest that multiple effects (e.g., resistive losses, Nerst effect) can lead to leakage of magnetic flux out of the hot fuel [14,17]. Thus, diagnosing the efficacy of flux compression in experiments is critical for understanding target performance and the viability of the concept.
We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0:5-ns=sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cmdiameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differentialoutput gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MVon dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA...
We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burnaveraged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1 × 10 13 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.