The naturally occurring anthraquinone emodin is found in many plants that have been part of traditional Chinese medicine (TCM) for thousands of years. Recent pharmacological studies suggest that emodin might be a valuable therapeutic option for the treatment of various diseases. We describe the antioxidant effects of emodin on the superoxide radical. Our techniques include X-ray crystallography, density functional theory (DFT), and a recently developed cyclovoltammetry improvement, the rotating ring-disk electrode (RRDE) method. X-ray results show offset π–π stacking of emodin units in the crystal, and this type of interaction is supported by the DFT, which indicates one superoxide interacting via π–π stacking with the quinone moiety, by transferring one electron to the ring, and inducing some quinone aromatization. The second superoxide seems to form a stable complex after interacting with the H(hydroxyl) in position 3 of emodin. We show that one molecule of emodin sequesters two molecules of superoxide: one forming a complex with H(hydroxyl) in position 3, and the other due to π–π oxidation of superoxide and emodin ring reduction. We conclude that emodin is a very strong antioxidant. Color variation in the voltaic cell was observed during the RRDE study. This was analyzed and explained using a mini-grid gold electrode for UV-Vis spectroscopy in the voltaic cell.
Coumarins are plant-derived secondary metabolites. The crystal structure of three coumarins—bergamottin, osthole and fraxidin—are described and we analyze intermolecular interactions and their role in crystal formation. Bergamottin is a furanocoumarin found in citrus plants, which is a strong inhibitor of the principal human metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). The crystal structure determinations of three coumarins give us the geometrical parameters and reveal the parallel-displaced π–π stacking and hydrogen bonding intermolecular interactions used for molecular assembly in the crystal structure. A quite strong (less than 3.4 Å) stacking interaction of bergamottin appears to be a determining feature that distinguishes it from other coumarins studied in this work. Our DFT computational studies on the three natural products of the same coumarin family docked into the active site of CYP3A4 (PDB 4D78) show different behavior for these coumarins at the active site. When the substrate is bergamottin, the importance of π-π stacking and hydrogen bonding, which can anchor the substrate in place, appears fundamental. In contrast, fraxidin and osthole show carbonyl coordination to iron. Our docking calculations show that the bergamottin tendency towards π–π stacking is important and likely influences its interactions with the heme group of CYP3A4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.