Weld pool transport phenomena during the transition from conduction-mode laser spot welding to keyhole laser spot welding of titanium were studied by numerical simulation. A range of laser powers were simulated and temperature dependent evaporation recoil pressure and cooling were applied as boundary conditions on the weld pool surface. Simulation results predicted a complex time-varying flow pattern during weld pool development. The surface-normal flow at the weld pool centre oscillated between upwards and downwards during the simulation time due to interaction of competing effects of evaporation recoil and surface tension pressures and laser heating and evaporation cooling. The results show that the laser weld pool flow dynamics play a key role during the transition from conduction-mode laser welding to keyhole welding.
Abstract:The liquefaction, gasification, and other chemical modifications of oil shale are challenging goals of chemistry and chemical engineering. The use of new solvent systems, such as supercritical fluids and ionic liquids, represents new avenues in the search of environmentally benign technologies. Supercritical fluid extraction (SFE) with carbon dioxide is particularly effective for the isolation of substances of medium molecular weight and relatively low polarity. At elevated temperatures it is possible to unite the breaking chemical bonds in the kerogen organic matter and convert the former into oil with extraction using supercritical fluids. Quantitative and qualitative information obtained at different temperatures during SFE is providing some insight into the speciation of hydrocarbons in geological samples. Ionic liquids were studied as potential solvents for kerogen extraction. However, these chemical processes are favored at elevated temperatures up to the thermal degradation temperature of kerogen, ≈400 ºC. There were observed significant differences in the chemical composition of extracted oil and from the oil from the classical semicoking process of oil shale. An additional application would be a combination of the two methods-the use of supercritical carbon dioxide to recover nonvolatile organic compounds from room-temperature ionic liquid without using organic solvents.
The use of a charged-particle microbeam provides a unique opportunity to control precisely, the number of particles traversing individual cells and the localization of dose within the cell. The accuracy of 'aiming' and of delivering a precise number of particles crucially depends on the design and implementation of the collimation and detection system. This report describes the methods available for collimating and detecting energetic particles in the context of a radiobiological microbeam. The arrangement developed at the Gray Laboratory uses either a 'V'-groove or a thick-walled glass capillary to achieve 2-5 microns spatial resolution. The particle detection system uses an 18 microns thick transmission scintillator and photomultiplier tube to detect particles with > 99% efficiency.
A uranium-molybdenum alloy clad in 6061 aluminum has the potential to lead to a wide application of low-enriched uranium fuels, replacing highly enriched uranium for research reactors. A Zr coating acts as a diffusion barrier between the fuel and the aluminum cladding. In this study, U-10Mo (mass %) was coated with Zr using a plasma spray technique recognized as a fast and economical coating method. Neutron time-of-flight diffraction was used to study the microstructure evolution by quantifying the phase fractions of involved phases as well as the texture evolution of U-10Mo and Zr during plasma spray coating with Zr. Quantitative texture analysis revealed that the texture was drastically changed for high coating temperatures, likely due to selective grain growth. Furthermore, the Zr coating showed a preferential orientation, which could be correlated with the initial texture of the uncoated U-10Mo. This could be explained by the epitaxial growth of the Zr on the U-10Mo substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.