As robots begin to interact with humans and operate in human environments, safety becomes a major concern. Conventional robots, although reliable and consistent, can cause injury to anyone within its range of motion. Soft robotics, wherein systems are made to be soft and mechanically compliant, are thus a promising alternative due to their lightweight nature and ability to cushion impacts, but current designs often sacrifice accuracy and usefulness for safety. We, therefore, have developed a bioinspired robotic arm combining elements of rigid and soft robotics such that it exhibits the positive qualities of both, namely compliance and accuracy, while maintaining a low weight. This article describes the design of a robotic arm-wrist-hand system with seven degrees of freedom (DOFs). The shoulder and elbow each has two DOFs for two perpendicular rotational motions on each joint, and the hand has two DOFs for wrist rotations and one DOF for a grasp motion. The arm is pneumatically powered using custom-built McKibben type pneumatic artificial muscles, which are inflated and deflated using binary and proportional valves. The wrist and hand motions are actuated through servomotors. In addition to the actuators, the arm is equipped with a potentiometer in each joint for detecting joint angle changes. Simulation and experimental results for closed-loop position control are also presented in the article.
In this work we demonstrate the power, speed and effectiveness of an automated rules-based approach for performing optical proximity correction. The approach applies to both conventional and phase-shifting mask layouts for optical lithography. Complex imaging, substrate and process phenomena can be folded into comparatively few rules parameters. Using simple arithmetic, these parameters pre-compensate the layout for the combined proximity effects. The rules consist of edge rules and corner rules for biasing feature edges and for adding sub-resolution assist features. This paper describes an integrated solution which includes rules parameter generation and fast, hierarchical rules application. Experimental results demonstrate improved edge placements and wider process latitude than for non-corrected layouts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.