Previously [1] we showed how small admixtures of xenon (Xe) stabilize electron avalanches in liquid Argon (LAr). In the present work, we have measured the positive charge carrier mobility in LAr with small admixtures of Xe to be 6.4 x 10 -3 cm 2 /Vsec, in approximate agreement with the mobility measured in pure LAr, and consistent with holes as charge carriers. We have measured the concentration of Xe actually dissolved in the liquid and compared the results with expectations based on the amount of Xe gas added to the LAr. We also have tested LAr doped with krypton to investigate the mechanism of avalanche stabilization.
Previously [1] we showed how small admixtures of xenon (Xe) stabilize electron avalanches in liquid Argon (LAr). In the present work, we have measured the positive charge carrier mobility in LAr with small admixtures of Xe to be 6.4 x 10 -3 cm 2 /Vsec, in approximate agreement with the mobility measured in pure LAr, and consistent with holes as charge carriers. We have measured the concentration of Xe actually dissolved in the liquid and compared the results with expectations based on the amount of Xe gas added to the LAr. We also have tested LAr doped with krypton to investigate the mechanism of avalanche stabilization.
Scintillators were polished in four steps using polishing paper, to reduce the optical loss occurring at their cross section when radiation detectors are fabricated with plastic scintillators. We studied the correlation between the polishing steps and detection efficiency and assessed the detection characteristics that are dependent in the polishing steps. Our results showed that the detection efficiency increased by approximately 7.75 times for a detector that used a scintillator polished in four steps, compared to a detector that used an depolished scintillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.