Relaxation of tensile strain in AlxGa1−xN layers of different compositions epitaxially grown on GaN/sapphire is investigated. Extended crack channels along 〈211¯0〉 directions are formed if the aluminum content exceeds a critical value, which decreases with increasing layer thickness. This process is found to limit the average strain energy density to a maximum value of 4 J/m2. By calculating the stress distribution between cracks and the strain energy release rate for crack propagation, the relaxed strain as measured by x-ray diffraction is correlated to the crack density, and the onsets of crack channeling and layer decohesion are fitted to a fracture toughness of 9 J/m2. Moreover, the crack opening at the surface is found to linearly increase with the stress. Annealing of samples above the growth temperature introduces additional tensile stress due to the mismatch in thermal expansion coefficients between the layer and substrate. This stress is shown to relieve not only by the formation of additional cracks but also by the extension of cracks into the GaN layer and a thermal activated change in the defect structure.
Rotating instabilities (RIs) have been observed in axial flow fans and centrifugal compressors as well as in low-speed and high-speed axial compressors. They are responsible for the excitation of high amplitude rotor blade vibrations and noise generation. This flow phenomenon moves relative to the rotor blades and causes periodic vortex separations at the blade tips and an axial reversed flow through the tip clearance of the rotor blades. The paper describes experimental investigations of RIs in the Dresden Low-Speed Research Compressor (LSRC). The objective is to show that the fluctuation of the blade tip vortex is responsible for the origination of this flow phenomenon. RIs have been found at operating points near the stability limit of the compressor with relatively large tip clearance of the rotor blades. The application of time-resolving sensors in both fixed and rotating frame of reference enables a detailed description of the circumferential structure and the spatial development of this unsteady flow phenomenon, which is limited to the blade tip region. Laser-Doppler-anemometry (LDA) within the rotor blade passages and within the tip clearance as well as unsteady pressure measurements on the rotor blades show the structure of the blade tip vortex. It will be shown that the periodical interaction of the blade tip vortex of one blade with the flow at the adjacent blade is responsible for the generation of a rotating structure with high mode orders, termed a rotating instability.
Current models on the tip clearance flow in turbomachines only describe the time-averaged behaviour of the flow structures. However, the real tip clearance flow is periodically fluctuating in time. This fact has to be considered for the design of turbomachine bladings especially with regard to blade vibrations and tip clearance noise. Detailed experimental investigations on the time-resolved behaviour of the flow in the rotor blade tip region were carried out in a four-stage low-speed research compressor. A strong time-periodic interaction of the blade tip vortices of adjacent blades can be shown for relatively large tip clearance of the rotor blades for operating points near the stability limit of the compressor. The resulting flow pattern, which frequency is not related to the rotor frequency, moves along the blade row. It can be described as a multicell configuration with strongly fluctuating cell number and size. The structure and propagation of the flow instability can be summarized in a model of the periodic fluctuating tip clearance flow (Mailach et al., 2000). Additional experiments were carried out in a straight cascade to improve the understanding of this flow phenomenon. It can be shown by means of time-resolved measurements that the same disturbance exists for comparable inlet flow conditions in the blade tip region of the cascade. Flow visualizations show that the blade tip vortex is strongly fluctuating and moves sometimes ahead of the leading edge of the adjacent blade. The result of this is a short-lengthscale flow pattern, which is propagating along the blade row. These experiments confirm the model of the time-periodic tip clearance flow proposed for compressors. A Strouhal-number for the estimation of the frequency of the flow fluctuation will be presented, which includes both design and aerodynamic parameters.
Experimental results are presented which show the influence on the secondary flow and its losses by a profile modification of the leading edge very close to the endwall. The investigation was carried out with a well-known turbine profile that originally was developed for highly loaded low pressure turbines. The tests were done in a low speed cascade wind tunnel. The geometrical modification was achieved by a local thickness increase; a leading edge endwall bulb. It was expected that this would intensify the suction side branch of the horse-shoe (hs-) vortex with a desirable weakening effect on the passage vortex. The investigated configuration shows a reduction of secondary losses by 2.1 percent points that represents approximately 50 percent of these losses compared to the reference profile. Detailed measurements of the total pressure field behind the cascade are presented for both the reference and the modified profile. The influence of the modified hs-vortex on the overall passage vortex can be clearly seen. The results of a numerical analysis are compared with the experimental findings. A numerical analysis shows that the important details of the experimental findings can be reproduced. Quantitative values are locally different. The theoretical approach taken cannot yet be used for an exact prediction of the loss reduction. However, the analysis of the interaction and the resulting tendencies are considered to be valid. Hence, theoretical investigations as a guideline for the design of a leading edge bulb at the endwall are a valuable tool.
Thick AlxGa1−xN epilayer with microcracks grown by metalorganic vapor-phase epitaxy on a GaN buffer above a (0001) sapphire substrate was comprehensively characterized by spatially and spectrally resolved cathodoluminescence (CL) and micro-Raman (μ-Raman) spectroscopy. The variation of the CL line shift and the μ-Raman measurements between the microcracks are consistent with the interpretation that AlGaN is to a large extent stressed like a two dimensional film between the microcracks with nearly full relaxation close to the cracks. A satisfactory theoretical confirmation of this stress distribution was obtained by a three-dimensional finite-element application of the elasticity theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.