The field of AlGaInN ultraviolet UV light-emitting diodes (LEDs) is reviewed, with a summary of the state-of-the-art in device performance and enumeration of applications. Performance-limiting factors for high-efficiency UV LEDs are identified and recent advances in the development of deep UV emitters are presented.
The mosaicity of GaN layers grown by metalorganic vapor phase epitaxy, on (0001) sapphire and exhibiting different grain diameters is studied using high-resolution x-ray diffraction. The coherence lengths, the tilt, and the twist of the mosaic structure are determined utilizing data taken in different x-ray scattering geometries. The results of different models, which were applied, are then compared and discussed. The dislocation densities, obtained from the x-ray data, are compared with the results of plan-view transmission electron microscopy and atomic force microscopy.
Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments.
High-resolution x-ray diffraction has been used to analyze the type and density of threading dislocations in (001)-oriented GaN epitaxial layers. For this, (00l) and (hkl) Bragg reflections with h or k nonzero were studied, the latter one measured in skew symmetric diffraction geometry. The defect analysis was applied to a variety of GaN layers grown by molecular-beam epitaxy under very different conditions. The outcome is a fundamental correlation between the densities of edge- and screw-type dislocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.