ObjectivesThe objective of this study was to investigate the effect of a laminin
coating on calcium phosphate precipitation on three potentially bioactive
titanium surfaces in simulated body fluid. Material and MethodsBlasted titanium discs were prepared by alkali and heat treatment (AH),
anodic oxidation (AO) or hydroxyapatite coating (HA) and subsequently coated
with laminin. A laminin coated blasted surface (B) served as a positive
control while a blasted non coated (B-) served as a negative control.
Surface morphology was examined by Scanning Electron Microscopy (SEM). The
analysis of the precipitated calcium and phosphorous was performed by Energy
Dispersive X-ray Spectroscopy (EDX).ResultsThe thickness of the laminin coating was estimated at 26 Å by ellipsometry.
Interferometry revealed that the coating process did not affect any of the
tested topographical parameters on µm level when comparing B to B-. After 2
weeks of incubation in SBF, the alkali-heat treated discs displayed the
highest calcium phosphate deposition and the B group showed higher levels of
calcium phosphate than the B- group.ConclusionsOur results suggest that laminin may have the potential to be used as a
coating agent in order to enhance the osseoinductive performance of
biomaterial surfaces, with the protein molecules possibly functioning as
nucleation centres for apatite formation. Nevertheless, in vivo studies are
required in order to clarify the longevity of the coating and its
performance in the complex biological environment.
The aim of this study was to evaluate the early bone response around laminin-1-coated titanium implants. Forty-five rats distributed in three equally sized groups were provided with one control (turned) and one test (laminin-1-coated) implant and were sacrificed after 3, 7, and 21 days. Real-time reverse-transcriptase polymerase chain reaction was performed for osteoblast markers (alkaline phosphatase, runt-related transcription factor 2, osteocalcin, type I collagen, and bone morphogenic protein 2), osteoclast markers (cathepsin K and tartrate-resistant acid phosphatase), inflammation markers (tumor necrosis factor α, interleukin 1β and interleukin 10), and integrin β1. Bone implant contact (BIC) and bone area (BA) were assessed and compared to the gene expression. After 3 days, the expression of bone markers was higher for the control group. After 7 days, the expression of integrin β1 and osteogenic markers was enhanced for the test group, while cathepsin K and inflammation markers were down-regulated. No significant differences in BIC or BA were detected between test and control at any time point. As a conclusion, implant coating with laminin-1 altered gene expression in the bone-implant interface. However, traditional evaluation methods, as histomorphometry, were not adequately sensitive to detect such changes due to the short follow-up time.
Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 μg/mL) and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM) and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp.) for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold), calcitonin receptor (1.35-fold), and ATPase (1.25-fold). The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold) and tumour necrosis factor-α (1.61-fold) relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface.
Within the limitations of this study, our results suggest a great potential for laminin-1 as a coating agent. A turned implant surface coated with laminin-1 could enhance osseointegration comparable with a bioactive implant surface while keeping the surface smooth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.