The present study was undertaken to evaluate in vitro antifungal activity of aqueous and hydroacoholic extracts from bark of Terminalia ivorensis A. Chev. (Combretaceae). In vitro antifungal activity of all the extracts was done by agar slant double dilution method. Candida albicans and Aspergillus fumigatus clinically important strains were used for the study. ketoconazole was used as standards for antifungal assay. Antifungal activity was determinated by evaluating of antifungal parameters values which are MCF (minimal concentration fungicide) and IC50 (Concentration for 50% of inhibition) around each assay. Result showed that the antifungal activity was more pronounced against Aspergillus fumigatus than Candida albicans. The hydroalcoholic extract showed best antifungal activity than ketoconazole. Demonstration of antifungal activity of T. ivorensis provides the scientific basis for the use of this plant in the traditional treatment of diseases and may help to discover new chemical classes of antifungal substances that could serve as selective agents for infectious disease chemotherapy. Keywords: Terminalia ivorensis, antifungal activity, clinical strains, hydroalcoholic extract [J Intercult Ethnopharmacol 2013; 2(1.000): 49-52
This study was conducted to make a contribution in the treatment of dermatosis, particularly moths. Ointments of different concentrations made from the hydroethanolic extract of Terminalia ivorensis and shea butter were used. The best results were obtained with the following concentrations: C4: 0.01 g/mL; C5: 0.0125 g/mL; C6: 0.015 g/mL and C10: 0.025 g/mL for trichophytic clipping moth on eleven (11) selected persons with ringworm and C9: 0.0225 g/mL for microsporic clipping moth on one (1) person. The present study really provides the scientific basis for the use of this plant in the traditional treatment of diseases and may help to discover new chemical classes of antifungal substances that could serve as selective agents for infectious disease chemotherapy.
Aims: Phenolic compounds are secondary metabolites that are important in the plant due to their role in plant defense and their antioxidant activity with other biological properties such as antipyretic, analgesic and antimicrobial activities. This study focused on the biological potential activity of total phenolic compounds extracted by soxhlet method from Ocimum gratissimum leaves (Lamiaceae), a popular medicinal plant harvested at Daloa (Côte d’Ivoire).
Study Design: Activities were directed on the in vitro antifungal and antioxidant activities combined to phenolic compounds analysis.
Place and Duration of Study: The study was carried out at the Department of Environment and Plant Protection, and Laboratory of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine (USAMV) between March to July 2014, Laboratory of Biochemistry and Microbiology (Bioactives Natural Substances Unit), Jean Lorougnon Guédé University between September 2014 to January 2015.
Methodology: The extract obtained named TPCOG was tested against Fusarium species for its antifungal activity by applying agar slant double dilution method and for its antioxidant activity by DPPH radical scavenging assay. Qualitative and quantitative evaluation of phenolic compounds were carried out by HPLC analysis method with sigma chemical standards.
Results: Tests showed that TPCOG was a powerful antifungal extract with MIC and MFC ranging between 3.125 µg/mL to 12.5 µg/mL. This extract was fungicidal and its antioxidant activity reached F= 541.25± .25 mM Trolox/mL (I= 70 ±1.85%) with a total phenolic content equal 195.70±1.33 mg GAE/g. Radical scavenge and antifungal activities correlated very well with total phenolic compounds. Phenolic content analysis showed presence of phenolic acids and flavonoids with a higher concentration for Quercetin (393.475 mg/100 g sample).
Conclusion: All this results demonstrated the biological potential activity of total phenolic compounds extracted from leaves of O. gratissimum and the possibility to use it in replace to essential oil for the formulation of biofungicides and nutraceuticals by industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.