Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients. Mol Cancer Ther; 12(11); 2459-71. Ó2013 AACR.
We report the development of a platform of dual targeting Fab (DutaFab) molecules, which comprise two spatially separated and independent binding sites within the human antibody CDR loops: the so-called H-side paratope encompassing HCDR1, HCDR3 and LCDR2, and the L-side paratope encompassing LCDR1, LCDR3 and HCDR2. Both paratopes can be independently selected and combined into the desired bispecific DutaFabs in a modular manner. X-ray crystal structures illustrate that DutaFabs are able to bind two target molecules simultaneously at the same Fv region comprising a VH-VL heterodimer. In the present study, this platform is applied to generate DutaFabs specific for VEGFA and PDGF-BB, which show high affinities, physico-chemical stability and solubility, as well as superior efficacy over anti-VEGF monotherapy in vivo. These molecules exemplify the usefulness of DutaFabs as a distinct class of antibody therapeutics, which is currently being evaluated in patients.
Protein arrays permit the parallel analysis of many different markers in a small sample volume. However, the problem of cross-reactivity limits the degree of multiplexing in parallel sandwich immunoassays (using monoclonal antibodies (mAbs)), meaning antibodies must be prescreened in order to reduce false positives. In contrast, we use a second chip surface for the local application of detection antibodies, thereby efficiently eliminating antibody cross-reactions. Here, we illustrate the potential advantages of using single-chain Fv fragments rather than mAbs as capture and detection molecules with this double chip technology.
A procedure was established for selecting phage antibodies (phage-abs) from phage-displayed antibody repertoires by panning against proteins, separated by sodium dodecyl phosphate-polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membranes (Western blots). This immobilization strategy is applicable for secondary rounds of panning in selections against semipurified proteins, and directs the selection toward antibodies suitable as immunochemical reagents in Western blots. In model experiments, enrichment factors as high as 1.9x10(5) were obtained in a single round of panning. Furthermore, we demonstrate the application of this approach by selection of phage-abs recognizing the human Werner protein, which is defective in a premature aging syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.