The Bauschinger behavior after a strain reversal was evaluated for samples with microstructures representative of production sheets for a low-carbon (LC) steel, a high-strength low-alloy (HSLA) steel, and a dual-phase (DP) steel. The microstructures were produced in the samples by laboratory hot rolling and heat treatment. Bauschinger tests were run at strain rates of 0.0001, 0.001, and 0.01 s Ϫ1 , with tensile prestrains between 1 and 7 pct. After the reversal, the samples were strained 2 pct in compression. The Bauschinger effect is described by a Bauschinger effect parameter (BE), which is the difference between the steel strength at reversal and the 0.05 pct offset yield strength on the reversal, normalized by the steel strength at reversal. It is found that the Bauschinger effect is a continuous increasing function of the strength of the steel, provided the steel is prestrained at least 2.5 pct or beyond the yield point elongation. A single trend line describes the Bauschinger effect variation with steel strength, for all three steels in the present study and for an aluminum-killed drawing quality (AKDQ) steel from a previous investigation. No strain rate influence on the BE was found, due to the limited strain rate range and data uncertainty.
To clarify the effects of deep rolling parameters on residual stress, two-dimensional and three-dimensional finite element models were developed using the Chaboche hardening model. Both two-dimensional and three-dimensional simulation results were compared with experimental results. The three-dimensional model is more accurate, especially the 90° cut-out model. The maximum errors in the longitudinal and circumferential directions of 90° cut-out are 8.9% and 15.6%, respectively. Compared to 20 MPa, a rolling pressure of 38 MPa results in larger and deeper compressive residual stress in both directions, but lower surface residual stress in the circumferential direction. Compared to 30% overlap, 60% overlap produces larger compressive residual stress in the near surface region in the longitudinal direction and deeper residual stress with lower maximum compressive residual stress in the circumferential direction. The friction coefficient only slightly affects residual stress in the circumferential direction; increasing the rolling speed induces higher near surface residual stress in the circumferential direction. Compared to the HG6 tool, the HG8 tool generates decreasing surface residual stresses and deeper residual stress in both directions. Compared to one pass, two passes significantly increase the residual stress in circumferential direction, but only slightly increase the residual stress in the longitudinal direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.