Linseed oil undergoes an oxidative drying reaction upon exposure to air, resulting in a soft film. The reaction conversion after 48 h reached 88% and 59% when it reacted at room temperature and −20 °C, respectively. Linseed-oil-loaded microcapsules were prepared using a urea-formaldehyde polymer as the shell wall material. The microcapsules were integrated into a commercially available protective coating formulation to prepare self-healing coating formulations with different capsule loadings. The coating formulations were applied on mortar specimens to prepare self-healing coatings. The effect of capsule loading on adhesion strength of the self-healing coating was studied. The self-healing function of the coating was investigated by SEM, a water sorptivity test and an accelerated carbonation test. Successful self-healing was demonstrated for both scratch and crack damage in the coatings. Low-temperature self-healing was demonstrated with a saline solution sorptivity test conducted at −20 °C. The linseed-oil-based microcapsule-type self-healing coating system is a promising candidate as a protective coating for cementitious materials.
Polyimide films have conventionally been prepared by thermal imidization of poly(amic acid)s (PAAs). Here we report that the improvement of tensile strength while increasing (or maintaining) film flexibility of polyimide films was accomplished by simple microwave (MW) irradiation of the PAAs. This improvement in mechanical properties can be attributed to the increase in molecular weight of the polyimides by MW irradiation. Our results show that the mechanical properties of polyimide films can be improved by MW irradiation, which is a green approach that requires relatively low MW power, very short irradiation time, and no incorporation of any additional inorganic substance.
In the current study, poly(imide-siloxane) copolymers (PIs) with different siloxane contents were synthesized and used as a matrix material for PI/Al2O3 composites. The PIs were characterized via their molecular weight, film quality, and thermal stability. Among the PI films, free-standing and flexible PI films were selected and used to prepare PI/Al2O3 composite films, with different Al2O3 loadings. The thermal conductivity, thermal stability, mechanical property, film flexibility, and morphology of the PI/Al2O3 composite films were investigated for their application as heat-dissipating material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.